
Sympathetic Cooling
Optimization for Precision

Spectroscopy of Chiral Molecular
Ions

Doron Behar

Sympathetic Cooling
Optimization for Precision

Spectroscopy of Chiral Molecular
Ions

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Physics

Doron Behar

Submitted to the Senate
of the Technion — Israel Institute of Technology

Av 5785 Haifa July 2025

This research was carried out under the supervision of Prof. Yuval Shagam and Yotam
Soreq, in the Phyiscs Department.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s research.
The most up-to-date versions of these publications are:

Doron Behar. Sympathetic cooling optimization for chiral molecular ions precision spec-
troscopy. Poster Presented in CCMI 2024 conference, September 2024.

The research underlying this thesis was conducted honestly, in accordance with the
ethical standards customary in academia. This applies, in particular, to the collection,
processing and presentation of data, the description of and comparison with previous
research work, etc. Also, the report on research activities and findings in this work is
thorough and honest in accordance with the aforementioned standards.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 Why Chiral Molecular Ions? . 3
1.1.2 How to Cool a Molecular Ion? . 4
1.1.3 Why Cool the Molecular Ions Fast? 4
1.1.4 Ion Trapping . 5
1.1.5 The Experiment’s Velocity Map Imaging 6

1.2 Simulations Overview . 6

2 Theory 9
2.1 Trapping . 9

2.1.1 Solving the Mathieu Equation in 1D 10
2.1.2 Solving Mathieu Equation Inversely 12
2.1.3 Initial Conditions & Ion-Ion Coulomb Energy 14
2.1.4 A Non-Trivial Secular Frequency Mass Dependence 16

2.2 Laser Cooling . 19
2.2.1 Ion Cloud Offset Induced by Laser Cooling Force 20
2.2.2 Overcoming the Offset . 21
2.2.3 Summary of Laser Cooling Parameters 22

2.3 State of the art Sympathetic Cooling Models 23
2.4 Simulations Parameters & Convergence 24

2.4.1 Time Periods . 24
2.4.2 Time Dividing Fineness . 25
2.4.3 Initial Conditions . 26

2.5 Simulation Results Analysis . 26
2.5.1 Temperature’s Random Variables 26
2.5.2 Temperature’s Probabilistic Methods 26
2.5.3 Temperature Under the Secular Approximation 27

2.5.4 Temperatures Options Summary 28
2.5.5 Further Summarizing Analysis 28

3 Cooling Simulation Results 31
3.1 Laser Cooling Intrusion Angle(s) & Trap Geometry 31

3.1.1 Laser Angles Parametrization . 31
3.1.2 Simulation Results . 32

3.2 Scanning Ω & Initial Temperatures with CHDBrI+ 34
3.2.1 Yb+ Temperatures in the Presence of CHDBrI+ 34
3.2.2 Sympathetic Cooling with Varying Intensities 36

3.3 Angular Momentum Conservation . 37
3.4 Varying Secular Frequencies . 39

4 Conclusion & Outlook 43

A More Coulomb Energies Dependence Figures 45

B Simulation Software Manual & Technical Details 47
B.1 flake.nix: Setting up a Development Environment 47
B.2 sim.py . 48

B.2.1 Parameters . 48
B.2.2 Managing Simulation Parameters with xarray 51
B.2.3 measurements/ HDF5 groups format 53
B.2.4 Scan Parallelizing Algorithm (parallel_hdf5_splitting.py) . 54

B.3 sim-continue.py . 55
B.3.1 Simulating More Time then Originally Prescribed 56
B.3.2 Simulating with a Finer Time Division 56
B.3.3 Removing Abruptly Some Ions 56
B.3.4 File Names Details . 56

B.4 sim-reconcile.py . 57
B.4.1 Merging Threshold . 57

B.5 time-plot.py . 58
B.5.1 Handling Multi-Dimensional Scans 58
B.5.2 Handling Different Traps & Offsets (collapse_ds.py) 59
B.5.3 Showing pwlf Fit Results . 60
B.5.4 Miscellaneous Options . 60

B.6 plot.py . 61
B.6.1 Top Right: Summarized Results’ Dependence on Simulation Pa-

rameters . 61
B.6.2 Bottom Left: Scan’s Dimensions Sliders 62
B.6.3 Top Left: 3D Animation . 63
B.6.4 Middle Right: Time Dependent Results 64

B.7 histogram-plot.py . 64
B.8 h5doctor.py . 64

B.8.1 Modifying Parameters . 65
B.8.2 Coulomb Energies . 65
B.8.3 Ignoring Measurements . 65

B.9 Helpers, not Dealing Directly with Simulations 66
B.10 Reference Tables & Figures . 68

C Calculating Intra-molecular Vibration Redistribution (IVR) 73
C.1 Technical Notes . 75

C.1.1 ./calc.py . 75
C.1.2 ./plot.py . 75
C.1.3 ./density-printer.py . 76

Bibliography 77

Hebrew Abstract i

List of Figures

1.1 Overview of the absolute values of ∆PV between the two enantiomers
of CHDBrI and CHDBrI+, for all 9 fundamental vibrational transi-
tions [ESL+23], where ν6 ≈ 33.3 THz. 4

1.2 Illustration of a molecule’s dissociation, done with a photon of energy
ℏωP D. If the photon’s energy was tuned right, the molecule will be
dissociated, depending on the energy level it was in. 5

1.3 Schematic depiction of a Ramsey sequence along with preparation and
readout. Preparation includes molecule synthesis and cooling. 5

1.4 Our trapping and detection scheme using a VMI. In stage (a) the ions
are kicked from the trap to the VMI; In stage (b) they pass freely to the
electrostatic lens; In stage (c) they pass through the electrostatic lens
focusing them onto a charge sensor located at the end of the apparatus. 7

2.1 Matplotlib interactive plot presenting the 1 dimensional solution of the
Mathieu equation, with a spectrum analysis demonstrating the correct
matrix based solution of β in the dashed line. The orange sinusoidal
line in the right axes is a simple cosine line with the right phase and the
calculated β as a frequency. The T and #t sliders control the total time
duration of the numerical ODE solution and the amount of time points,
respectively. 11

2.2 Matplotlib interactive plot demonstrating the fast decay of the Mathieu
equation’s solution’s γn (normalized) coefficients, as |n increases. The
dashed β line represents the β which zeros the matrix determinant. . . . 12

2.3 Mathieu Stability diagram, with shades of gray marking the magnitude of
β. The × signs are specific β values, that were used in many simulations
of this work - βs corresponding to secular frequencies (8.5, 8.5, 1.5)kHz,
with frf = 50kHz. 13

2.4 Dependence of Ec/N – the ion-ion Coulomb energy per particle, upon N

and τ for a trap of Yb+ (in varying amounts), with secular frequencies
of (8.5, 8.5, 1.5)kHz, in the range of τ ∈ [2, 200]K. 15

2.5 Dependence of Ec/N – the ion-ion Coulomb energy per particle, upon
the axial secular frequency fz, calculated from randomly sampled spatial
distributions for a few specific (τ, N) pairs, with radial secular frequen-
cies fx = fy = 8.5kHz. 15

2.6 Simulations showing the required time for Yb+ to reach equilibrium for
several distributions in 3 different initial temperatures. Temperatures
were calculated by averaging over the variances of the vx, vy, and vz

velocity distributions (see section 2.5 for additional temperature calcu-
lation methods). RF heating is observed for Tinitial = 5 K. 16

2.7 A Matplotlib interactive plot showing the non-trivial dependence of the
secular frequencies of a ’target’ mass (represented in blue), given a Math-
ieu trap with (a, q) that define a certain secular frequency for a ’cooler’
mass, termed β0. The (a, q) values used here, produce β0 = 2 · 8.5/50 -
like the x & y axis Mathieu forces of figure 2.8. 18

2.8 The collective x-axis movement’s frequencies of a 2-species-mixed ion
cloud, positioned in a spatial offset from the origin at t = 0. Dif-
ferent markers represents whether micromotion was enabled, and the
naive_freqs parameter is represented in color. The frequencies were
obtained via fitting [VGO+20] the cloud’s center to a cosine. Identical
results can be obtained via using numpy.fft.fft[HMvdW+20]. 19

2.9 The offset produced by a single laser coming in the z axis, where secular
frequencies are fx = fy = 8.5 kHz and fz = 1.5 kHz. The offset measured
fits exactly the analytical prediction of x0 ≈ 2.1mm. 21

2.10 The effect of the Vacuum Chamber’s windows’ attenuation upon the
laser cooling intensities. 21

2.11 Key results from Baba & Waki’s model, for mlc = 24 amu (mass of
24Mg+). Their simulation and analytical work establish a critical mass
ratio for effective sympathetic cooling in linear RFQ ion traps. 24

2.12 Coulomb explosion, demonstrated both in 3D simulation and in T (t)
measurement. 25

2.13 Fourier transform of the movement of the ion cloud’s center, for 2 masses
co-trapped in a physical Mathieu trap of frequencies (fx, fy, fz) = (8.5, 8.5, 1.5)kHz
for mass 174amu. The ion cloud was centered at t = 0 in an x axis offset
of 4mm. The peaks of the expected frequencies per mass are marked in
the dashed lines, and fit satisfyingly to the Fourier transform’s peaks. . 30

2.14 Cosine fit for one the movement of the ion cloud’s center, for 2 masses co-
trapped in a physical Mathieu trap of frequencies (fx, fy, fz) = (8.5, 8.5, 1.5)kHz
for mass 174amu. The ion cloud was centered at t = 0 in an x axis offset
of 4mm. Only a few cycles are presented in order for the fit’s convergence
to be clear. 30

3.1 Our laser intrusion angles parametrization. 32

3.2 Temperatures as a function of time, for several different laser angles
groups. As explained in section 3.1.1, the blue-solid line represents a
single laser beam of Ω/Γ = 1, split upfront to 3 laser beams. On the
other hand, recycling the laser power is simulated in the blue-dashed line
– where all beams’ intensities are Ω/Γ = 1. 33

3.3 Simulation results showing the effect of rogue Yb+ ions on the tempera-
tures of the Yb+ ion cloud. Results were obtained using 299 CHDBrI+

and 701 Yb+ ions in a trap with secular frequencies (8.5, 8.5, 1.5) kHz.
The right plots show Yb+ temperatures, averaged over 4 different initial
conditions, for 3 different laser intensities represented by line colors. The
left figures show animation snapshots from the end of 2 selected simula-
tions, with red arrows showing the laser cooling intrusion angle. In the
top figures, the initial temperature is Ti = 10 K, whereas in the bottom
figures it is Ti = 5 K. Rogue Yb+ ions are most apparent in figure (a). . 35

3.4 Histograms of Yb+’s kinetic energies of the last 3ms of the cooling pe-
riod shown in figure 3.3b. The orange Ω/Γ = 1 line shows the energy
distribution depicted in figure 3.3a. Energies above 100 K are not shown
due to large statistical uncertainties (relative errors

√
N/N > 0.5). . . . 36

3.5 The CHDBrI+ ions’ temperatures, starting in initial temperatures {5 K, 10 K},
and in various laser intensities. 37

3.6 Hysteresis in sympathetic cooling of CHDBrI+: cooling rate depends on
initial temperature. Simulations show that CHDBrI+ ions cool faster
when starting at Ti = 5 K compared to ions that cooled from Ti = 10 K
to the same temperature. The energy distribution comparison in fig-
ure 3.6b reveals that this effect arises from non-Boltzmann distributions
that persist from initial conditions. 38

3.7 A snapshot of an animation in which one can clearly see the ions are
rotating around the z axis - which is also the symmetry axis of the
cylindrically shaped trap. 39

3.8 Temperatures of Yb+, along with a positions snapshot of fr = (15, 15, 2.5)
(in kHz). 40

3.9 Comparison of CHDBrI+ temperatures, with Ti ∈ {5, 10}K, and many
different traps varied by color. As always, ion trap’s frequencies are in
kHz. RF Heating is also observed for the strong traps, especially when
we start at Ti = 5K, and is explained well in literature [vMHG+22;
OMS96]. 41

3.10 Simulation results of the dependence of the sympathetic cooling rate
of the secular trap frequency and the initial temperatures. The plot
shows higher cooling rates for higher trapping frequencies. Both Tf

& Ts were calculated by averaging over the temperatures in the last
quarter of the cooling and stabilization times, respectively (for more
details see section 2.5.5). The errors of each temperature was calculated
via standard deviation of the temperatures vectors. A total of 6·3·4 = 72
measurements are presented here, for 6 traps, 3 initial temperatures, and
4 different initial conditions. 42

A.1 Same as figure 2.4, but with a normalization to τ . Added here to show
how Ec/N can exceed τ for some values of (τ, N). 45

A.2 The relative standard deviation received when generating figure 2.4. Nat-
urally, in low N (low-densities), the randomness is larger. 46

A.3 The number of iterations that had to be performed to generate each
point in figures 2.4. Almost always 5 random number generations is
enough to reach a relative standard deviation smaller then 0.12, however
sometimes a few more iterations are needed, naturally for small N (low
densities). 46

B.1 A typical window opened by ./plot.py. All features are described in
section B.6. 71

C.1 IVR histogram computed for CHDBrI+, given the eigen modes also given
in table 1.1a. The different colors represent two different computational
methods [LEB+23]. Dashed lines represent the input vibrational modes,
and their colors match the colors of the ascending histogram lines. . . . 74

C.2 A comparison of IVR histograms for all molecules mentioned in our ab-
initio calculations [LEB+23]. All eigen modes were computed with the
B97 method. 74

Abstract

The standard model predicts the weak force causes variations between the spectra of
left and right-handed chiral molecules. Our group’s goal is to measure this shift, also
termed parity violation (PV) which has never been measured in molecules. This PV
shift in IR vibrational excitations is predicted to be as high as a few Hz at best, thus
measuring it requires cold chiral molecules. Molecular ions were chosen because they
can be easily trapped and cooled for long time periods.

Cooling chiral molecules directly is challenging, so we co-trap and directly cool
simpler ions (Yb+), that cool the molecule via collisions – a process known as sym-
pathetic cooling. The proposed PV detection scheme relies on photo-dissociation of
the molecule, so performing the measurement repeatedly requires reloading new cold
molecules every time. The goal of this research is to optimize the cooling rate with
respect to the coherence time, to reduce the dead time in each repetition.

We discuss the results of trapping & cooling processes from many body simulations
that include Coulomb interactions. One propensity rule we find, is that higher secular
frequencies have proven to increase the cooling rate – something that can be done
experimentally as part of the proposed experimental setup.

1

2

Chapter 1

Introduction

1.1 Motivation

The word chirality is derived from the Greek word for ’hand’. We define an object
as chiral if it is distinguishable from its mirror image, with the classic example of our
hands. Alternatively, the two mirror images of a chiral object, usually referred to as
the left and right hands of the object, cannot be superimposed. This also means they
cannot be related by rotational and/or translational transformations alone. The first
documented observation of chirality in molecules was of L. Pasteur in 1848, where he
examined salt crystals and found they appear in two mirrored structures [VC21], called
enantiomers.

Chirality is a fundamental property of many molecules in nature. Despite the
structural symmetry allowed by chemistry, nature consistently uses only one enantiomer
in living organisms in many biologically relevant molecules. Some researchers suggest
that Parity Violation (PV), which is part of the Standard Model of Particle Physics can
explain this phenomenon [Qua02]. We aim to measure the energy difference between
opposite enantiomers’ vibrations, denoted ∆PV.

1.1.1 Why Chiral Molecular Ions?

Calculations predict that for many chiral molecules, ∆PV ≪ 1 Hz [QS01], while the
relevant vibrational mode frequencies lie in the mid- to far-IR regime - 16− 18 orders
of magnitude larger. Measuring such a tiny energy difference is challenging. However,
using chiral molecular ions offers two advantages: (1) long trapping durations allow
for extended coherence times, enhancing experimental precision, and (2) the parity-
violating energy shift ∆PV is often larger in ions than in their neutral counterparts.
Additionally, cooling the molecular ions can reduce thermal Doppler broadening and
further extend coherence times.

Calculations predict a maximal ∆PV ≈ 1.8 Hz [ESL+23] for CHDBrI+, which is
significantly larger than the estimated ∆PV ≈ 0.25 Hz in the neutral species [QS01], as
illustrated in Figure 1.1.

3

1 CBrI scissors
2 Cl stretch
3 CBr stretch
4 CHD rock
5 CD wag
6 CH wag
7 CHD scissors
8 CD stretch
9 CH stretch

(a) Names & indices of the vibra-
tional modes. (b) ∆PV per vibrational mode.

Figure 1.1: Overview of the absolute values of ∆PV between the two enantiomers of
CHDBrI and CHDBrI+, for all 9 fundamental vibrational transitions [ESL+23], where
ν6 ≈ 33.3 THz.

1.1.2 How to Cool a Molecular Ion?

Direct laser cooling of molecules is challenging due to their complex internal structure,
including many rotational and vibrational modes that prevent the formation of closed
cycling transitions. While a few specially designed molecules have been successfully
laser cooled in recent years [SBD10; VHA+22], more complex species such as CHDBrI+

- our target molecule, will be too challenging for laser cool.
The solution we went with is to use sympathetic cooling - a technique where two dif-

ferent ion species are co-trapped, and only one species is directly laser cooled [WBGS08].
The Laser-Cooled (LC) ions absorb kinetic energy from the Sympathetically Cooled
(SC) ions through Coulomb collisions, thereby cooling their external degrees of free-
dom indirectly. For a comparative sympathetic cooling method, see Hudson’s review
of sympathetic cooling of molecular ions using laser cooled neutral atoms [Hud16].

For efficient sympathetic cooling there are two criteria that the laser cooled ions
must meet: (1) They need to have a cycling transition that can be used for laser
cooling, and (2) their mass needs to be close to the mass of the sympathetically cooled
ions [BW02a]. We chose Yb+, with a mass of mLC = 174amu, where CHDBrI+’s mass
is mSC = 222amu. Other ions we considered that are known to have been laser cooled,
are Ca+ & Be+, but Yb+’s mass is the closest to CHDBrI+’s mass.

1.1.3 Why Cool the Molecular Ions Fast?

∆PV is planned to be measured using Ramsey spectroscopy due to numerous advan-
tages [LEB+23; ESL+23; Ere23]. However with molecular ions, we cannot use fluo-
rescence for state detection due to too low ion number, so the plan is to use instead
photo-dissociation, as depicted in figure 1.2. The important implication of using photo-
dissociation state detection after every Ramsey sequence, is that we need to reload new

4

Figure 1.2: Illustration of a molecule’s dissociation, done with a photon of energy ℏωP D.
If the photon’s energy was tuned right, the molecule will be dissociated, depending on
the energy level it was in.

readout

df df

prepare

Figure 1.3: Schematic depiction of a Ramsey sequence along with preparation and
readout. Preparation includes molecule synthesis and cooling.

molecules before every Ramsey sequence. The preparation, which includes reloading
the molecules and cooling them, and the Ramsey sequence are depicted schematically
in figure 1.3.

The uncertainty in a frequency measurement of a Ramsey sequence scales as 1/
(
τ
√

N
)
,

where τ is the coherence time, and N is the amount of measurements [PSHL25]. In-
creasing τ (by cooling) increases the amount of Ramsey oscillations after which we
focus the measurement efforts. Cooling fast however, means that the preparation time
is shorter, allowing us to also increase N , and decrease the uncertainty even further.

1.1.4 Ion Trapping

The basic challenge of trapping charged particles is to overcome the limitation of the
Laplace equation:

∇2ϕ = 0 (1.1)

Meaning that we cannot get a point in space in which the potential is at a minima

5

in all spatial dimensions. We can artificially overcome this limitation by imposing a
force resembling a saddle-point, and oscillate the sign of it. If the oscillation is fast
enough, a mass in the center will not have enough time to escape the origin in the
direction of the maxima, before it will become a minima. [Gho95]

The saddle-point oscillation frequency is usually in the RF regime, and is denoted
ωrf ≡ 2πfrf [Gho95]. On time scales much longer then the RF period, the ion’s motion
under such an oscillating potential, is of lower frequency denoted ωsec = 2πfsec.

Typical ion traps induce secular frequencies of ∼ 100 kHz, with RF frequencies of at
least a few MHz. However, the ion trap used in our lab, is uniquely designed [WSoT24]
to apply a range of secular frequencies of usually less then 10 kHz, with typical RF
frequencies of 100 kHz or 50 kHz. This design allows to trap more ions and enhance the
fluorescence signal, and to manipulate the ions’ positions and kick them to our detector,
as explained in the next section. This flexibility in frequencies invites researching the
effect of different secular frequencies over the cooling efficiency.

1.1.5 The Experiment’s Velocity Map Imaging

Another motivating point for cooling the ions in general, is our detection scheme based
upon a Velocity Map Imaging (VMI) system optimized [WSoT24] for our research.
The basic idea depicted in figure 1.4 is to shutdown the ion trap’s electric fields after
the photo-dissociation is done, and then focus the fragments to a detector of charged
particles with spatial resolution. The key feature is that different kinetic energies are
mapped to different points in the detector, allowing you to infer the kinetic energy
distribution of the particles you had before releasing them. This mapping has limited
resolution and was optimized as much as possible [WSoT24].

1.2 Simulations Overview

Since the main mechanism of sympathetic cooling is Coulomb interactions, we chose
to simulate trapping and cooling with LAMMPS[TAB+22]. It is a time propagation
software package, capable of utilizing the GPU for simulating numerous classical models
relevant in many contexts. In our case, we selected a simple model of charged point
particles with only long-range Coulomb interactions.

Given N particles and C available GPU cores, the amount of Coulomb interactions
LAMMPS is capable of computing in a single step is N(N−1)/(2C), since each coulomb
interaction can be computed by a single GPU core. With 1000 ions, and our GPU, we
found that the bottleneck of such simulations is writing the results to disk, and not
computing the Coulomb interactions. More technical details on how we save results to
disk throughout a simulation are available in chapter B.

6

Figure 1.4: Our trapping and detection scheme using a VMI. In stage (a) the ions are
kicked from the trap to the VMI; In stage (b) they pass freely to the electrostatic lens;
In stage (c) they pass through the electrostatic lens focusing them onto a charge sensor
located at the end of the apparatus.

7

8

Chapter 2

Theory

This chapter will iterate the theoretical background necessary for understanding how
we trap (section 2.1) and cool (section 2.2) our ions, and how we analyzed the sim-
ulation results. With respect to trapping, I want to highlight two points, which are
(1) inverse solution of the Mathieu equation (section 2.1.2) and (2) non-trivial depen-
dence of mass to secular frequencies (section 2.1.4) which is particularly relevant for
thermodynamically stable initial conditions.

2.1 Trapping

Realized ion traps are implemented using electrodes designed in a specific geometry,
attached to oscillating electric potentials of specific forms. In literature, one often
finds analytical expressions for electric potentials given a certain geometry and volt-
ages [Ake12]. These expressions are highly tied to the parameters of the geometry, and
cannot be easily generalized for our trap design. Our trap can be analyzed pretty easily
in SIMION[Dah00], but it is not capable of including also ion-ion Coulomb interactions
in simulations [SRKK12].

LAMMPS[TAB+22], is not designed for solving the Laplace equation (1.1) given a
design of electrodes and voltages. It is great however for computing ion-ion interactions,
within electric fields given as analytical expressions. Therefore we chose to focus our
efforts on producing analytical expressions with abstract parameters, that trap our
ions in desired secular frequencies. In contrast to the common expression found in the
literature for an ion trap’s electric field, we chose to use for the following expression for
the ith spatial dimension:

Ei = (ai + 2qi cos(ωrft))xi (2.1)

The dimensions of the abstract parameters ai & qi are naturally Volt/distance2.
The 1D equation of motion you get for a single ion under this field is:

9

(ãi + 2q̃i cos(2τ))xi = ∂2
τ xi (2.2)

Where 2τ ≡ ωrft, and:

ai/ãi = qi/q̃i = mω2
rf/e (2.3)

with e the charge of the ion. This is called the Mathieu equation [Mat36], and I’ll
present here how I solved it, in a way that is more tailored for semi-numerical calcula-
tions, without involving physical parameters like the trap’s geometry and voltages.

2.1.1 Solving the Mathieu Equation in 1D

The solution used in this work is obtained by substituting the following expression to
equation 2.2.

x(τ) = eiβτ
∞∑

n=−∞
γneinτ + e−iβτ

∞∑
n=−∞

γne−inτ (2.4)

This expression is based upon the parametrization found in literature [Gho95;
Dan20], but with n substituted by n/2. This parametrization is cleaner and hence
more natural for programming. Putting it in the equation yields the infinite set of
equations:

γn+1 + γn−1 = ãi − (βi + n)2

q̃i
γn, ∀i ∈ {x, y, z}, ∀n ∈ Z (2.5)

Where n ∈ (−∞,∞) and β = 2ωsec/ωrf . The main point important to understand,
is that we need to find a non-trivial solution, meaning a set γn coefficients that not all
are 0. The best way to view the equations of all coefficients is via a matrix:



.
...

. . . −D−N 1 0 · · · 0 0 0 · · ·

. . . 1 · · · · · · · · · · · · · · · 0 · · ·
0 · · · −D−1 1 0 · · · 0
... · · · 1 −D0 1 · · ·

...
0 · · · 0 1 −D1 · · · 0

· · · 0 · · · · · · · · · · · · · · · 1 . . .

· · · 0 0 · · · 0 1 −DN
.

...
...





...
γ−N

...
γ−1

γ0

γ1
...

γN

...



!=



...
0
...
0
0
0
...
0
...



(2.6)

Where similarly to 2.5:

10

Matrix size

3

0.0 0.5 1.0

Normalized Frequency

102

103

104

105

0 100 200 300

τ

−4

−2

0

2

4

a 1.80e-03 q 463e-03

T 300 #t 105.0

Figure 2.1: Matplotlib interactive plot presenting the 1 dimensional solution of the
Mathieu equation, with a spectrum analysis demonstrating the correct matrix based
solution of β in the dashed line. The orange sinusoidal line in the right axes is a simple
cosine line with the right phase and the calculated β as a frequency. The T and #t
sliders control the total time duration of the numerical ODE solution and the amount
of time points, respectively.

Dn = a− (β + n)2

q

One can easily see that Dn increases ∼ n2, which promises the target β solution
might converge if a finite matrix will be used. To require a non-trivial solution, we
simply require the matrix to have a 0 determinant, thus supplying us an equation for
β that can be solved easily numerically, for matrix size 2N + 1.

Inserting the β into the matrix, and inspecting the kernel of it, will give us the γn

coefficients of the solution, and we’d be able to easily verify they indeed decrease with
|n|, and that γ0 is the most dominant.

The verification of this solution was implemented in a Matplotlib [Hun07] based
interactive plot, presented in figures 2.2 & 2.1. A common approximation for a solution
is:

βi ≈
√

ãi + q̃2
i /2 (2.7)

But it wasn’t used in these plots at all. In the next section however, this approxi-
mation was helpful.

Interactive plot 2.1 can be also useful for inspecting the roughness of the motion as
a function of a and q. As expected, a high q and a lower a produce more ’RF-noisy’
motion near the peaks of the oscillatory, secular motion. Also, satisfyingly, there’s
barely any difference in the β accuracy as N is increased, even when starting from

11

Matrix size

3 −1.0 −0.5 0.0 0.5 1.0

β

−1

0

1

2

3

4

×108 |M |(β)

−2 0 2

n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Null space

a 1.80e-03 q 463e-03

Figure 2.2: Matplotlib interactive plot demonstrating the fast decay of the Mathieu
equation’s solution’s γn (normalized) coefficients, as |n increases. The dashed β line
represents the β which zeros the matrix determinant.

N = 3. Hence, this parameter was practically hard-coded in all the simulations etc. to
N = 7.

2.1.2 Solving Mathieu Equation Inversely

Now that we know how to solve the Mathieu equation given (ai, qi), and get a secular
frequency βi, we wish to be able to find a set of 3 (ai, qi) pairs per spatial dimension,
that will produce a requested set of secular frequencies. The (ai, qi) must satisfy the
Laplace equation, meaning:

∑
i∈x,y,z

ai =
∑

i∈x,y,z

qi = 0 (2.8)

So we have now 5 equations, and 6 unknowns. A single solution to this system of
equations can be obtained by adding a 6th equation, based on our ion trap geometry:
Using SIMION [Dah00] simulations of our trap geometry, we found that the RF poten-
tial along the z-axis is approximately 2 orders of magnitude weaker than in the radial
directions. Therefore, we demanded also:

qz = 0 (2.9)

The approximation in equation 2.7 for all 3 axes, along with equations 2.8 and 2.9,
can be used to compute analytically an approximated expression of three {ãi, q̃i} pairs,
in terms of all three βi:

12

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

q

−1.0

−0.5

0.0

0.5

1.0

a

βx = 340× 10−3, ãx = −1.80× 10−3, q̃x = 463× 10−3

βy = 340× 10−3, ãy = −1.80× 10−3, q̃y = −463× 10−3

βz = 60.0× 10−3, ãz = 3.60× 10−3, q̃z = 0× 100

0.2

0.4

0.6

0.8

β

Figure 2.3: Mathieu Stability diagram, with shades of gray marking the magnitude of
β. The × signs are specific β values, that were used in many simulations of this work
- βs corresponding to secular frequencies (8.5, 8.5, 1.5)kHz, with frf = 50kHz.

(
ãx ãy ãz

q̃x q̃y q̃z

)
≈

1
2

(
+β2

x − β2
y − β2

z

)
1
2

(
−β2

x + β2
y − β2

z

)
+β2

z√
β2

x + β2
y + β2

z −
√

β2
x + β2

y + β2
z 0

 (2.10)

These expressions were used in the software as an initial guess for the numerical
optimizer.

The best way I found to illustrate the exact solution to this system of equations, is
via a Mathieu stability diagram. Most Mathieu stability diagrams found in literature,
assume that geometry dictates ax = ay, and like us, that qz = 0[BW02a; SKH+16;
ZOR+07a]. Thanks to equation 2.8, this suggests that one can plot a single Mathieu
stability diagram for a 3 dimensional trap using a single Mathieu stability diagram for
(ar, qr) where ar ≡ ax = ay = −az/2 and qr = qx = −qy as axes. These stability
diagrams [Ake12; JPYM92; Gho95] need to take care of correctly mirroring qx = −qy

to satisfy stability in both x & y spatial dimensions (where the z axis is trivially stable).
Figure 2.3 presents a different approach to show the stability of a 3 dimensional trap,
without even imposing cylindrical symmetry which shouldn’t be physically impossible.

Now that we know how to implement an ion trap with any secular frequencies we
want, we need to discuss how to initiate the simulations in a thermodynamically stable
state. Distributing the velocities is trivial with a Maxwell-Boltzmann distribution,
but distributing the positions is harder. The next two sections describe implications
relevant to the initial positions.

13

2.1.3 Initial Conditions & Ion-Ion Coulomb Energy

The questions we wish to answer in this section are: How significant is the ion-ion
Coulomb energy (ICE) in the Boltzmann ensemble? Should it be considered when
initiating the positions and velocities of the ions? If so, how? To assess the ICE in
the temperature scale, we divided it by N - the amount of particles, and denoted it as
Ec/N . This is essentially an assessment of the mean-field ICE energy.

Under the secular approximation, and when ignoring the ICE, the Maxwell-Boltzmann
partition function dictates the probability of finding an ion in a position x to be:

3∏
i=1

√
ki

2πKBT
exp

(
−kix

2
i

2KBT

)
(2.11)

Where ki is the spring-like coefficients of the harmonic trap. Since the real temper-
ature is affected by the ICE, in the next usages if this expression we will not use the
symbol T , but rather we’ll use τ .

This distribution couples naturally density and temperature. More precisely: Ec/N

is a function N , and the distribution parameters of expression 2.11 - {ki} and τ . The
relation of Ec/N to {ki}, τ and N is not analytical of course, yet we still expect a
smooth behavior if we’d average over enough randomness. In figure 2.4 we can see that
(expectedly), dense and cold ion clouds produce a higher ICE, that even exceeds τ .1

To produce this color-mesh, we distributed the ions in space multiple times per
(τ, N) point, until the relative standard deviation of all Ec/N results in that point was
lower then 0.12 (arbitrary number), with a minimum of 5 distributions (also termed
’iterations’). Statistical results of figure 2.4 is depicted in figures A.2 and A.3.

Naturally, the value of the highest ICE found escalates with the trap’s tightness, as
can be seen in figure 2.5.

Summary

The ICE is not negligible for dense & cold distributions. Our ability to initiate a
distribution of ions in a thermodynamically stable set of positions is limited by the
effects of strong ICE, and by the tightness of our trap. To avoid too strong ICE effects,
we thereby avoid distributing ions in T < 5K.2

More importantly, we expect time dependent temperature measurements to be offset
from the initial temperature Ti on the order of magnitude of Ec/N . Since we also wish
to start cooling when the system is thermodynamically stable, the ICE offset requires us

1Figure A.1 shows the same results normalized to τ .
2During the research period I tried to construct an algorithm that would get a real temperature

T ̸= τ , N and a set of secular frequencies, and compute a τ with which the system will be more
thermodynamically stable initially. When this algorithm was used for a single ion species it was
slightly effective. However when 2 ion species were used, (with different masses and different {ki} - see
section 2.1.2), accommodating the algorithm for that case has proved to be too complex, and too slow.

14

101 102

τ [Kelvin]

102

103

N

2

4

6

8

10

E
c
/N

[K
el

vi
n

]

Figure 2.4: Dependence of Ec/N – the ion-ion Coulomb energy per particle, upon N and
τ for a trap of Yb+ (in varying amounts), with secular frequencies of (8.5, 8.5, 1.5)kHz,
in the range of τ ∈ [2, 200]K.

2 4 6 8 10 12

fz[kHz]

5

10

15

20

E
c
/N

[K
el

vi
n

]

τ = 3.0K

τ = 5.0K

τ = 7.0K

τ = 10.0K

τ = 20.0K

N = 1000

N = 500

Figure 2.5: Dependence of Ec/N – the ion-ion Coulomb energy per particle, upon the
axial secular frequency fz, calculated from randomly sampled spatial distributions for
a few specific (τ, N) pairs, with radial secular frequencies fx = fy = 8.5kHz.

15

0 1 2 3 4 5 6

time [ms]

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0
T

(m
=

1
7
4
)[

K
]

Ti = 5.00[K]

Ti = 10.00[K]

Ti = 20.00[K]

Figure 2.6: Simulations showing the required time for Yb+ to reach equilibrium for
several distributions in 3 different initial temperatures. Temperatures were calculated
by averaging over the variances of the vx, vy, and vz velocity distributions (see sec-
tion 2.5 for additional temperature calculation methods). RF heating is observed for
Tinitial = 5 K.

to wait for a few ms, before beginning cooling, as can also be seen from the oscillations
in figure 2.6.

2.1.4 A Non-Trivial Secular Frequency Mass Dependence

In the literature, analysis of two different masses in an ion trap commonly employs the
pseudo-potential approximation [WAMS12a; BW02b; KKM+00], also called the pon-
dermotive potential [Hom13], which yields an RF-averaged, perfectly harmonic poten-
tial. This approximation is widely used and sufficiently accurate for many applications,
particularly in quantum computing implementations where the number of trapped ions
is small. In such a potential, given a:

k = mcoolerω2
sec(cooler) (2.12)

Applied to any mass, in a certain spatial dimension, one obtains a secular frequency
for mtarget of:

ωsec(target) = ωsec(cooler)

√
mcooler

mtarget
(2.13)

For our simulations, we solve the Mathieu equations directly without the pseudo-
potential approximation to determine the secular frequencies experienced by the target
mass. This approach is particularly relevant when initiating simulations in thermody-
namic equilibrium according to equation 2.11.

16

mm √
mr Physical Description

✓ × ✓ A single electric field exhibiting 3 dimensional Mathieu
equations - The only physically possible kind of trap, with
non-trivial secular frequencies as presented in figure 2.7.

× ✓ × A single kx-like force is acting upon all ions - implementing
the naive frequencies you’d expect from a perfect Harmonic
oscillator.

✓ ✓ × Two different Mathieu forces are applied to each mass,
such that the naive frequencies related by √mr ≡√

mcooler/mtarget are experienced by the two ion species.

× × × Two different kx-like forces are applied to each mass, such
that the non-naive frequencies are experienced by the two
ion species.

Table 2.1: Truth table for micromotion (mm) and naive_freqs (√mr) combinations
and their physical validity.

According to equations 2.1 and 2.3:

(ãi, q̃i) ∝ 1/mcooler. (2.14)

Hence the real secular frequency of mtarget can be obtained by calculating βtarget

given the pair:

(ãi, q̃i) ·
mcooler

mtarget
(2.15)

The dependence of βtarget as a function of the mass ratio is depicted in figure 2.7.
This insight invites defining 2 decoupled, boolean parameters for the simulation, named
micromotion & naive_freqs. Table 2.1 is a truth table explaining what trapping forces
are applied in each combination of these parameters, and a separate definition of these
parameters is laid out below.

naive_freqs (√mr)

Controls whether the secular frequencies experienced by the target CHDBrI+ ion are
defined using the ’naive’ √mr relation. Turning this option on naturally implements a
trap that is not physically implementable.

micromotion (mm)

Controls whether the secular frequencies experienced by both ion species are imple-
mented using a Mathieu like force like in equation 2.1, or using a perfect harmonic trap
force like kx. A perfectly harmonic trap is of course not implementable.

17

Matrix size

3 0 2 4 6 8 10

mr = target/cooler

0.5

1.0

1.5

2.0

2.5

3.0 β(mr)/β0

Naive
√

1/mr, β0 = 346× 10−3

CHDBrI/Yb

a 1.80e-03 q 463e-03

Figure 2.7: A Matplotlib interactive plot showing the non-trivial dependence of the
secular frequencies of a ’target’ mass (represented in blue), given a Mathieu trap with
(a, q) that define a certain secular frequency for a ’cooler’ mass, termed β0. The (a, q)
values used here, produce β0 = 2·8.5/50 - like the x & y axis Mathieu forces of figure 2.8.

LAMMPS Verification of Mathieu Understanding

Now that we have gained confidence in our Mathieu solving capabilities, Let’s demon-
strate that indeed the reversely solved Mathieu equations presented in section 2.1 indeed
produces (ai, qi) pairs with the requested secular frequencies. Figure 2.8 demonstrates
that decoupling the micromotion and naive_freqs parameters was done successfully.

The color-varied behavior in figure 2.8, demonstrates the non-negligible difference
between the naive, √mr-based calculation and the correct ’Mathieu frequencies’ that
are experienced in a real ion trap. The fact the two × & ◦ markers appear on the
same spots, proves that indeed the simulation code has successfully created the cor-
rect forces no matter whether micromotion was enabled or not. The only physically
implementable dots are the blue × points.

18

180 190 200 210 220

mass

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

m
a
x

(f
x
)

[k
H

z]
(x

)

perfect

mm

Mathieu√
mr

Figure 2.8: The collective x-axis movement’s frequencies of a 2-species-mixed ion cloud,
positioned in a spatial offset from the origin at t = 0. Different markers represents
whether micromotion was enabled, and the naive_freqs parameter is represented
in color. The frequencies were obtained via fitting [VGO+20] the cloud’s center to a
cosine. Identical results can be obtained via using numpy.fft.fft[HMvdW+20].

2.2 Laser Cooling

The theory of laser cooling is well established for 2-level systems. The semi-classical
model implemented in the simulations presented in this work is explained well in liter-
ature [Coh92; Ste24a] and can be expressed as follows:

F(v) = hπγk̂

λ
· ω2/2

1/4 + ω2/2 + (d− k̂ · v/λ/γ)2
(2.16)

Where:

• h is Planck’s constant.

• k̂ is the laser’s spatial direction.

• λ is the cooling transition.

• γ, is the cooling transition’s lifetime in Hz dimensions. The more commonly used
rad/s scaled lifetime is usually denoted as Γ = 2πγ.

• d is the laser’s detuning normalized to Γ. Sometimes the not normalized detuning
in the dimensions of rad/sec is denoted as δ and with it we can denote d ≡ δ/Γ.

• v is the velocity of the cooled atom.

• ω is the laser’s dimensionless Rabi frequency. Given a Rabi frequency Ω in units
of rad/s, ω ≡ Ω/Γ.

19

Apparently, applying such a force on a trapped particle induces an offset that is
particularly relevant in ion traps like ours - ion traps of kHz secular frequencies. This
offset is calculated in the next section, and was verified in simulations too in figure 2.9.
We also describe how we overcame this offset as much as we could, in the section
afterwards.

2.2.1 Ion Cloud Offset Induced by Laser Cooling Force

In principal, there is a Taylor expansion for expression 2.16, for v/λ/γ ≪ 1. Let’s
observe this expansion for a slightly simplified, 1 spatial dimensional form of the force
- with v = (v, 0, 0) and k̂ = (1, 0, 0):

hπγ

λ
· ω2/2

1/4 + ω2/2 + d2

(
1 + 2d

1/4 + ω2/2 + d2 · v/λ/γ

)
(2.17)

To understand the effect of the 0th order force component, let’s observe a simplistic
system of a 1 dimensional harmonic oscillator with a damping force of the form above:

ẍ = −ω2
secx + F0/m− 2ξωsecẋ (2.18)

Where ωsec is the secular frequency well defined by our trap as explained in sec-
tion 2.1 and ξ is derived from the 1st order force component in expression 2.17. The
well known solution is:

x(t) = F0
mω2

sec
+ Ae−ξωsect sin(

√
1− ξ2 ωsect + ϕ) (2.19)

Where A and ϕ are determined by initial conditions. The steady state’s offset from
the origin F0/mω2

sec in the case of a laser cooling force is

xo = hπγ

λ
· ω2/2

1/4 + ω2/2 + d2 ·
1

mω2
sec

(2.20)

If we’ll take:

• Secular frequency ωsec in the order of magnitude of ∼ 2π · 1.5kHz.

• laser intensity of ω ≡ Ω/Γ = 1.3

• A common [Coh92] laser detuning of d ≡ δ/Γ = 1/2.

• Yb+ and the cooling transition at c/λ = 811.2891THz with the line width Γ/2π ≡
γ = 19.6MHz.[Ran20]

We’d get xo ≈ 2.1mm, where the trap’s harmonic region is of about 25mm from
the origin. This offset might not be very significant for only laser cooling a single ion
like Yb+, but sympathetic cooling will suffer from this offset, as the target molecule

3See also relation to actual intensity in subsubsection 2.2.3

20

Figure 2.9: The offset produced by a single laser coming in the z axis, where secular
frequencies are fx = fy = 8.5 kHz and fz = 1.5 kHz. The offset measured fits exactly
the analytical prediction of x0 ≈ 2.1mm.

won’t experience an identical offsetting force, and would not collide frequently enough
with the cooling ion and therefore will not lose kinetic energy, as seen in figure 2.9.
Naturally increasing the secular frequencies of the trap greatly reduces this offset, but
our trap’s design doesn’t allow much higher secular frequencies.

2.2.2 Overcoming the Offset

As suggested in a more classical laser cooling model presented by Dan Steck [Ste24b],
we can use 2 counter propagating laser beams, that will apply 2 forces which sum
up to F(v) − F(−v), forming an odd function in v, with no 0th order component.
Creating 2 such counter-propagating beams in experiment is simply done with a mirror.
However, the vacuum chamber’s windows induce a small attenuation on the intensity,
as illustrated in figure 2.10.

I0 I1 I2 I3I4

Vaccum Chamber

Figure 2.10: The effect of the Vacuum Chamber’s windows’ attenuation upon the laser
cooling intensities.

Since ω ≡ Ω/Γ and I ∝ Ω2, if we’d define4 α ≡ I4/I1, the actual force we are
imposed to apply upon our ions is:

4The experimentalist’s most intuitive measurement is to measure I2/I0, but it should equal I4/I1

assuming all windows are made of identical glass, and the intensity lost in the mirror is 0.

21

F(v, ω)− F(−v,
√

αω) (2.21)

Causing a slight imperfect oddness (with respect to v) of the force, depending on
the windows attenuation parameter α.

2.2.3 Summary of Laser Cooling Parameters

This is a good place to pause and list all the simulation parameters we collected from
the theory of laser cooling:

• The laser cooled ion. Choosing an ion and a cooling transition is effectively
choosing λ, γ and the mass m.5. Current experimental efforts as well as all
simulations presented focus on Yb+, but in principal this parameter is not hard-
coded, and

• The normalized laser’s intensity ω ≡ Ω/Γ.

• The normalized laser’s detuning d ≡ δ/Γ.

• The spatial direction(s) of the laser(s). This can be parameterized by a list of
(θ, ϕ) pairs - a pair per laser, defining each laser’s k̂ using a spherical coordinates
transformation, as depicted in figure 3.1.

• The Vacuum chamber’s windows’ attenuation. Our experiment’s attenuation is
α = 0.7, and most simulations used this value.6

Lastly, the relation of the Rabi frequency Ω to the actual laser intensity [Foo05], is
worth mentioning7:

I = 2πhcΓ
3λ3 ·

(Ω
Γ

)2
(2.22)

With Yb+’s parameters [Ran20], we conveniently get:

I ≈ 1mW
cm2 ·

(Ω
Γ

)2
(2.23)

Now that we know how to fully characterise laser cooling and ion trapping, we will
take revise some models we found in literature that try to predict cooling rates and
energy exchange rates in multi-species ensembles.

5Cooling transitions and line-widths were taken from [IUH+93; WvdBG+08; HRK+15; Ran20;
HFC+22]

6Besides figure 2.9 which displays it’s effect.
7The software is capable of displaying Ω dependence in the scale of the intensity I, but this behavior

wasn’t activated in the results presented.

22

2.3 State of the art Sympathetic Cooling Models

Among the literature we surveyed, the only theoretical model we found that resembles
the most to our simulations, is the one developed by Baba & Waki [BW02a]. Other
works deal with:

• Laser cooling of single-species crystals [TP00]

• Plasma-like behavior [SL03; FN22] where temperatures evolve through bulk ap-
proximations

• A single ion per species (2 altogether), under a pseudo-potential approxima-
tion [WAMS12b]

In contrast, Baba & Waki’s model directly addresses the exchange of energy be-
tween a laser-cooled species and a second, sympathetically cooled species, both in the
gas-phase regime of a linear radio-frequency quadrupole (RFQ) trap, without using a
pseudo-potential.

Their work combines detailed molecular dynamics (MD) simulations with a sim-
plified analytical model based on binary energy exchange. In their simulations, 35
laser-cooled (lc) 24Mg+ ions form a cold, dense cloud in the trap. When 5 sympa-
thetically cooled (sc) ions of various masses are introduced with higher initial kinetic
energies, their behavior depends critically on their mass: msc ≳ (0.54 ± 0.04)mlc are
efficiently cooled, while lighter ions are instead heated. This mass threshold arises
from the structure of micromotion in the linear RFQ trap, which lacks radio-frequency
confinement in the axial z direction.

To interpret the MD results, the authors developed a ‘heat-exchange’ model, where
the sympathetic cooling rate is described as the product of two components:

1. The energy transfer per collision, derived using elastic, two-body kinematics for
ions moving along Mathieu trajectories in the RFQ field. This term incorporates
the mass ratio, the trap parameters, and the kinetic energy.

2. The Coulomb collision rate, modeled using a differential cross-section of the
Rutherford scattering.

The resulting model yields a sympathetic cooling rate of the form

dW

dt
∝ Wsc −Wlc

(WscWlc)3/2

where Wi ∝ Ti and i ∈ {lc, sc}. This equation correctly captures the behavior
observed in their simulations. As shown in figure 2.11, the cooling becomes ineffective
both at very low and very high temperatures, and is strongly suppressed for msc <

0.54 mlc.

23

(a) Cooling rate as a function of both Tsc and
Tlc. Wsc ∝ Tsc. The mass ratio used in this
calculation - msc/mlc = 29/24 ≈ 1.32 is some-
what similar to our mass ratio - 222/174 ≈
1.28.

(b) MD simulation results for various msc val-
ues. Only ions heavier than roughly 0.54 mlc
are cooled effectively. Lighter ions are heated.

Figure 2.11: Key results from Baba & Waki’s model, for mlc = 24 amu (mass of 24Mg+).
Their simulation and analytical work establish a critical mass ratio for effective sym-
pathetic cooling in linear RFQ ion traps.

Their model incorporates many key physical ingredients: Coulomb interactions, en-
ergy partitioning, and trap-specific parameters. However, like other temperature-based
differential equation models, it cannot reproduce more complex dynamical phenomena
we observed in our simulations - phenomena that occur in a mixed gas-crystal phases.
Moreover, we will see in the following chapter a hysteresis or Mpemba phenomenon
in the temperature evolution, due to non-Boltzmann distributions of kinetic energies.
This explicitly disagrees with the results of figure 2.11a.

2.4 Simulations Parameters & Convergence

To fully define a simulation, one has to define a few more parameters, laid out in this
section.

2.4.1 Time Periods

We define two subsequent time periods for each simulation: stabilization and cooling.
During the stabilization period, ions evolve under only the trapping forces without laser
cooling, allowing thermodynamic instabilities from the initial conditions to dissipate.
After stabilization, the cooling laser is turned on for the cooling period.

For researching cooling parameters, and for most initial temperatures, a stabiliza-
tion time of 5 − 7 ms is sufficient. Figure 2.6 demonstrates this: the width of T (t)

24

0 2 4 6

time [ms]

20

25

30

35

T
(m

=
22

2)
[K

]

td=1489

td=1669

(a) Temperature of CHDBrI+ over a 6ms period of stabi-
lization starting at a temperature of Ti = 20K, simulated
with 2 different RF divisor td values. With td = 1489
the temperature calculated is oscillating very broadly,
and using a higher td fixes this issue.

(b) The coulomb force made 2
CHDBrI+ ions fly roughly 8 mm
from the center.

Figure 2.12: Coulomb explosion, demonstrated both in 3D simulation and in T (t)
measurement.

decreases adequately after 6 ms of stabilization for several initial temperatures.

Another usage for varying the stabilization time, is for measuring the eigenfrequen-
cies of the trap, without cooling (0 cooling time), and all cooling parameters irrelevant.

2.4.2 Time Dividing Fineness

Another technical parameter is the fineness of the time division. As further justified in
section 2.5.3, we want to always divide the simulation’s RF cycles to an integer number
of time steps. Since the RF frequency is also the highest frequency of the system, the
natural thing to do is to divide each RF cycle to an integer number of steps, and this
slightly arbitrary parameter is called the RF divisor.

One can perform many simulations with a certain RF divisor, and only in a specific
simulation, in a specific advanced time, notice a certain ion has experienced a atypically
strong Coulomb force. We term this phenomenon Coulomb Explosion, as it causes the
ion to fly far away from the origin, which in turn make the temperature measurements
noisy and essentially incorrect. An example of a coulomb explosion is depicted in
figure 2.12.

With too low RF divisors, the temperatures measurements will be noisy and in-
correct from the start. After a few months of optimizing this parameter, a value for
the RF divisor was stabilized around ≈ 1500, depending on the trap’s RF frequency.
When increasing the RF divisor doesn’t change substantially the results, we say the
simulations converge. To further tighten the demand of the RF division’s independence
from potential numerical errors, a prime number was chosen [Wal10].

25

2.4.3 Initial Conditions

To gather conclusions from the simulations as accurately as possible, we wanted to
initiate the simulation in a state that is thermodynamically stable as much as possible,
to avoid two undesired phenomena: (1) ’Sloshing’, which is the collective movement
of the ion cloud in high amplitudes around the origin, and (2) ’breathing’, which is a
collective and periodic expansion and contraction of the ion cloud.

The initial conditions were obtained using a Random Number Generator (RNG).
Each RNG seed integer represents a reproducible set of initial conditions, given the
algorithm distributing positions and velocities stays the same. To decouple the effects
of initial conditions upon the results, the same simulations but with different seeds were
ran, and in most results displayed this dimension was averaged over.

2.5 Simulation Results Analysis

In this section we will discuss how we analyzed the simulation results. Naturally, the
main quantity that interests us is the temperature, as a measure for the average kinetic
energy. In our case since we use a VMI, it is also a way to estimate the velocities’
distribution’s width. A related property of our ion clouds is their size, that can be
computed per spatial dimension simply via a std. As for the temperatures, there are
a apparently many more methods to extract them, laid out below.

2.5.1 Temperature’s Random Variables

Under the approximated treatment of the Ion trap’s potential as a perfect harmonic
potential, and with the long range Coulomb potential neglected, one can treat the
positions analogously, and hence almost identically to the velocities. This is done by
multiplying each particle’s position in the ith spatial dimension, by 2πfi, where fi is
the secular frequency of the Ion trap in the ith axis.8

2.5.2 Temperature’s Probabilistic Methods

Given N particles, which were sampled during the computer simulation in a certain
time, 2 arrays of shapes (N,3) are obtained for velocities and positions. The posi-
tions’ array can be scaled by the proper secular frequencies as described above, and
the question of how to compute a temperature given such an array has multiple le-
gitimate answers. To layout all available answers we’ll denote the random variable
ui ∈ {vi, 2πfixi} for axis i. The ith slice of length N from the above (N,3) shaped array
is a distribution of the ui random variable.

8Although not implied by an existence of an additional index besides i, there is a different, non-trivial
set of fi secular frequencies per particle species, as described in section 2.1.4.

26

One simple answer which is most intuitive in the context of VMI based measure-
ments is to simply compute mVar(ui)/KB, as derived from the Maxwell-Boltzmann
distribution expression:

f(u)d3u =
[

m

2πkBT

]3/2
exp

(
− mu2

2KBT

)
d3u (2.24)

Another approach, is to integrate over a solid angle of u in this probabilistic model,
and write a speeds-like distribution function:

f(|u|) =
[

m

2πKBT

]3/2
4π|u|2 exp

(
−m|u|2

2kBT

)
(2.25)

Which has a variance equal to KBT/m · (3 − 8/π), and a squared mean equal to
KBT/m ·8/π, thus providing 2 more methods to calculate a temperature given a (N,3)
shaped array of either positions or velocities.

2.5.3 Temperature Under the Secular Approximation

In addition to the velocities and/or positions choice of random variable(s), and in
addition to the above probabilistic model approaches, one has to decide how to imitate
the secular approximation computationally. The physical justification for doing it, is
the fact that in a crystal phase (which we aim achieving), the movement of the ions
is strongly coupled to the RF field which we have direct control over. Essentially the
model states that the collective movement due to the RF field is predictable and so
well defined, that it is not a random variable.

Experimentally speaking, we are capable of measuring positions and velocities al-
ways at the beginning/end of each RF cycle, and hence always use an integer number
of RF cycles. This is the simplest and probably the only way of implementing a sec-
ular approximation experimentally, and it should work best for ions that have formed
a crystal. In the following, we’ll describe what other techniques are available to a
computer simulation that might help achieve time dependent, secularly approximated
temperature assessments.9

Besides sampling the velocities and positions in the beginning of each RF cycle,
many simulations based research found in literature average over an RF period each
particle’s per-axis velocity, and then construct a temperature [ZOR+07b; MD21]. You
might hope that the same can be done for 2πfixi, but apparently, even for ion clouds
initiated in a thermal gas phase equilibrium in temperatures as low as 5K, each particle
reaches many spatial areas of the trap, and it’s RF averaged position produce (incorrect)
temperatures in the µK regime! This proves that this approach is not accurate also

9There’s also a technical motivation to imitate some kind of secular approximation when measuring
temperatures, and that is reducing the amount of disk writes required when simulating ∼ 3, 000 RF
cycles divided to ∼ 1500 time steps. Reducing the amount of disk writes not only reduces disk usage
of simulation result files, but also speeds up the total time required for simulating.

27

Dimension Optional values
T_coord v⃗ −→ωx

T_rf_type ⟨⟳⟩ min (⟳) max (⟳)
T_method Ave (|u|)2 (π/8) Var (|u|) /(3− 8/π) Var (ux) Var (uy) Var (uz)

Table 2.2: Methods to extract temperatures, obtained from a generalized maxwell-
Boltzmann model. ⟳ marks an RF cycle, and ⟨⟳⟩ marks an average over RF cycle.
The functions Ave and Var operate upon a 1 dimensional array of length N - the number
of per specie’s particles.

for the velocities, at least for gas like phases, as it suggests that ions go through a big
part of the phase-space. Never the less, I decided to do save the RF averaged velocities
(but not the positions) to the disk during simulations, and the software displaying the
simulation results provides the option to use this data.

Another interesting RF cycles related option, is to sample the velocities and po-
sitions in the middle of each RF cycle - where the kinetic energy induces by the RF
field should be at it’s peak. The difference from the energies in the beginning of the
RF cycles may help extract the RF motion energy. This data was also saved for both
positions and velocities, for consistency.

2.5.4 Temperatures Options Summary

The above temperatures related options are modeled in software as 3 dimensions with
the names and symbolic optional values as defined in table 2.2. We can select specific,
multiple temperature values and average over the different methods, coordinates and
RF handling methods. A common example is to take the positions and velocities
sampled in the beginning of each RF cycle (min (⟳)), and calculate the temperature
according to all T_methods. Whatever specific T_coords / T_rf_types / T_methods
were chosen, the code analyzing and displaying the simulation results averages over
these dimensions for each time index separately.10

2.5.5 Further Summarizing Analysis

Up until now we discussed time dependent properties of our ion clouds - the per spatial
axis size and the various temperatures. We can also summarize these results to obtain
various measures of how fast did we cool our ions, and how much smaller did the cloud
get due to the laser cooling. These kind of results are termed both in the code and here
as summarized results.

10Technically, the temperatures obtained from the RF averaged (⟨⟳⟩) positions (−→ωx) are considered
NaN and hence ignored.

28

Temperatures and Cloud Size

The simplest summarized result type is the temperature/size before/after cooling. The
time periods before/after the cooling are termed stabilizing part/cooling part respec-
tively. If we’ll denote the stabilizing & cooling times ts and tc, the summarized tem-
peratures/sizes are defined (slightly arbitrarily) as the average temperature/size in the
time periods (3/4, 1)ts and ts+(3/4, 1)tc. The standard deviation of the temperature/size
in each of those parts defines the uncertainty of the summarized measurement.

Cooling Frequency

Another way to summarize the temperature measurements is as follows: Given a T (t)
defined using any of the parameters of section 2.5.4, we take Log(T (t)/kelvin), and
apply a continuous piecewise linear fit [JV19], with 2 segments. This gives 2 cooling
frequencies in the units of kHz that depend on a dimension referred to as regime -
corresponding to each of the segments.

We chose to use 2 segments due to the observation that in many simulations most of
the ion cloud is cooled quickly and efficiently whereas afterwards the rest of the cooling
happens in a mixed thermodynamic phase of an ion crystal (massive and highly charged)
with a gas of ions surrounding it. An example of such a fit is available in figure 3.8b.

Collective Cloud Movement Frequencies

Lastly, only for verifying the frequencies expected from the Mathieu equations of the
ion trap, as explained in section 2.1, we define the following analysis referred to as
the cloud’s frequencies: Given the time dependent positions of all ions, we average
over the ions to get the cloud’s center position (still time and spatial axis depen-
dent). With it, we can take the Fourier transform and get the dominant frequency
via scipy.signal.find_peaks[VGO+20], or simply via numpy.argmax[HMvdW+20].
Such a Fourier transform is depicted in figure 2.13. The uncertainty of this computation
is defined by the Fourier transform resolution limit, dictated by the total time range
available.

If the collective movement is very harmonic (due to e.g collective offset at t = 0),
a fit for a cos(2πfxi + ϕ) can be attempted, and the fit’s frequency is the dominant
frequency of the movement. The uncertainty of this fit, is obtained from the covariance
matrix returned by scipy.optimize.curve_fit. An example of such a fit is available
in figure 2.14.

29

Figure 2.13: Fourier transform of the movement of the ion cloud’s center, for 2 masses
co-trapped in a physical Mathieu trap of frequencies (fx, fy, fz) = (8.5, 8.5, 1.5)kHz for
mass 174amu. The ion cloud was centered at t = 0 in an x axis offset of 4mm. The
peaks of the expected frequencies per mass are marked in the dashed lines, and fit
satisfyingly to the Fourier transform’s peaks.

Figure 2.14: Cosine fit for one the movement of the ion cloud’s center, for 2 masses
co-trapped in a physical Mathieu trap of frequencies (fx, fy, fz) = (8.5, 8.5, 1.5)kHz for
mass 174amu. The ion cloud was centered at t = 0 in an x axis offset of 4mm. Only a
few cycles are presented in order for the fit’s convergence to be clear.

30

Chapter 3

Cooling Simulation Results

Before trapping both Yb+ and CHDBrI+, we wanted to make sure we are able to cool
efficiently only Yb+. We believe that cooling fast the Yb+ ions, must help cool fast
the CHDBrI+ ions. This led us to investigate first how to cool Yb+ alone fast, and the
main results of this research are in section 3.1. Next we added CHDBrI+ and varied the
intensities and the initial temperatures, to see how sensitive is the sympathetic cooling
to these parameters.

3.1 Laser Cooling Intrusion Angle(s) & Trap Geometry

When our experimentalists first tried to cool the Yb+ ions, they had less than a total
of 1mW of power. This constraint motivated several questions that our simulations
address: Is using 1 laser enough? If so, which intrusion angle should be used? If
we split the available power among multiple laser beams, which angles are optimal?
Is recycling laser power (by reflecting the beam back through the trap with mirrors)
worth the technical effort of beam alignment?

In the case of 1 laser beam, the naive choice might be to use the z axis, which is
the symmetry axis of the trap, and in which there is also no micromotion. It turns out
that using the z axis is actually the worst choice of them all, and in fact you do want
the laser beam to mix the principal axes of the trap as much as possible. The next
sections describe how we parameterized this, and why we think mixing the principal
axes helps.

3.1.1 Laser Angles Parametrization

Our vacuum chamber has only a finite set of windows we can use, so we gave each
of them a name, as depicted in figure 3.1a. Each intrusion window is mapped to
a (θ, ϕ) pair, as listed in table 3.1, according to the standard spherical solid angle
parametrization depicted in figure 3.1b.

No matter how many lasers we use, we give all of them a single intensity I ∝
(Ω/Γ)2. This means that comparing 3 lasers of a total intensity of I, to a single laser

31

z r− r+ e+ e− e∗

θ 0◦ 67.5◦ 112.5◦ 45◦ 45◦ −45◦

ϕ 0◦ 0◦ 0◦ 45◦ −45◦ 45◦

Table 3.1: Our available intrusion angles mapping from names to (θ, ϕ) pairs.

x
r+

e-

r-
z

(a) Our vacuum chamber CAD de-
sign [WSoT24], annotated with the names
we gave of the available windows through
which our laser can intrude.

3/2 π θ

1/2 π

π

0

φ

x y

z

(b) Our (standard) solid angles parametrization

Figure 3.1: Our laser intrusion angles parametrization.

of the same intensity, would require using Ω ∝
√

I/3 in the 3 lasers simulations. In
figure 3.2, to simulate a total intensity of Ω/Γ = 1 split to 3 laser beams, we used
an intensity of Ω/Γ = 0.55 < 0.58 ≈

√
1/3 – taking possible experimental splitting

inefficiency into account.
In the results presented below, markers represent the intensities of each one of the

lasers, and colors represent laser angles groups. A group includes one or more lasers.
They were performed with a laser detuning of δ/Γ = −2.6, over 1000 Yb+ ions and in
a trap with frequencies (fx, fy, fz, frf) = (8.5, 8.5, 1.5, 100) kHz.

3.1.2 Simulation Results

In figure 3.2, we see a wide range of cooling rates, produced by several configurations
of a total laser intensity Ω/Γ = 1. The cooling rates are summarized in table 3.2. The
propensity rule we derive from this comparison is that mixing the principal axes of the
trap is what helps cool faster.

This is not only a matter of breaking the cylindrical symmetry of the trap, as e.g
the x laser does that too, and it cools slower then r−, which is almost parallel to it.
We also think there is no meaning to the ϕ direction of all laser angles, and the most
important parameter is how much the laser is mixing z principal axis movement with
the x, y plane.

Using 3 lasers which are all mixing the principal axes seems to work best. However,

32

0 1 2 3 4 5 6

time [ms]

10−3

10−2

10−1

100

101

T
[K

]

(θ, φ)∗ = e+, e−, e∗

(θ, φ)∗ = e−

(θ, φ)∗ = r−

(θ, φ)∗ = x

(θ, φ)∗ = z

Ω/Γ = 0.55

Ω/Γ = 1.00

Figure 3.2: Temperatures as a function of time, for several different laser angles groups.
As explained in section 3.1.1, the blue-solid line represents a single laser beam of
Ω/Γ = 1, split upfront to 3 laser beams. On the other hand, recycling the laser
power is simulated in the blue-dashed line – where all beams’ intensities are Ω/Γ = 1.

Power e+, e−, e∗ e− r− x z

Recycled 2.3(1) kHz 981(28) Hz 806(8) Hz 349(8) Hz 353(22) HzSplit 1.3(0.0) kHz

Table 3.2: Cooling rates computed with a linear fits to Log(T (t)) lines presented in
figure 3.2. Whether the laser power is recycled or split upfront is naturally relevant
only to a case with multiple lasers.

33

if obliged to use only one laser, using e− gives slightly better results in comparison to
r−. The latter however, is parallel to the optical table, and hence is slightly easier to
setup technically in the lab. This is why we chose r− for the next scan, in which we also
added CHDBrI+ ions and modulated the intensity (Ω), in multiple initial temperatures.

3.2 Scanning Ω & Initial Temperatures with CHDBrI+

In this section we will see several phenomena that are hard to model, and hence demon-
strate the significance of our results. We will start by focusing on the Yb+ tempera-
tures, as a function the laser intensity and the initial temperature. For reference, in
this section all of the simulations had 299 CHDBrI+ ions, 701 Yb+ ions, and used the
parameters presented in table 3.3.

δ/Γ Laser’s (θ, ϕ)∗ td frf [kHz] tc[ms] ts[ms] fx[kHz] fy[kHz] fz[kHz]
-2.6 r^- 67.5 0 1583 50 30.0 6.0 8.5 8.5 1.5

Table 3.3: Parameters commonly used for multi-dimensional scan of Intensities (Ω/Γ)
and initial temperatures (Ti)

3.2.1 Yb+ Temperatures in the Presence of CHDBrI+

In figure 3.3b we can see the temperatures of only the Yb+ ions, with colors for different
intensities. Intriguingly, we see they stabilize to a certain value, after an intensity
dependent amount of time. When we looked at the animations for each of those lines,
we saw a varying number of rogue Yb+ outside of the crystal, that are precluded from
joining it, due to CHDBrI+ that have already adsorbed. In figure 3.3a we see an
example of this phenomenon, with roughly 10 rogue Yb+ ions.

The energy distributions of the Yb+ ions when rogue Yb+ are present is depicted
in figure 3.4. In particular, the orange Ω/Γ = 1 histogram exhibits a small maximum
around 40K that demonstrates that rogue Yb+ shift the distribution away from being
Boltzmann.

In the examples above both species started at 10 K, but if we start at 5 K, we are
capable of assembling a fuller Yb+ crystal without rogue ions. This is apparent in the
animation snapshot in figure 3.3c, where we also used an intensity of Ω/Γ = 2.5. The
lack of rogue Yb+ ions is also apparent in the temperatures extracted to figure 3.3d.

To avoid rogue Yb+, one can suggest to cool all Yb+ ions slower (with e.g lower
laser intensity), so that the CHDBrI+ ions will be adsorbed more gradually. This
indeed might increase the total number of crystallized ions after a long time. However
we focus in this research on improving sympathetic cooling on time scales of roughly
50 ms, so we decided to stick with the attempt to cool the Yb+ ions as fast as we can.

After observing these results we realized we might not be able to completely crys-
tallize all Yb+ ions with only a single laser. However, this may not be a devastating

34

(a) Positions of all ions at the end of a simu-
lation that started at Ti = 10 K with a laser
power of Ω/Γ = 1 – orange temperatures in
figure (b).

0 10 20 30

time [ms]

2

4

6

8

10

12

T
(m

=
1
7
4
)[

K
]

Ω/Γ = 0.40

Ω/Γ = 1.00

Ω/Γ = 2.50

(b) Yb+’s temperatures (mass 174 amu), after
they started at Ti = 10 K.

(c) Positions of all ions at the end of a sim-
ulation that started at Ti = 5 K with a laser
power of Ω/Γ = 2.5 – green temperatures in
figure (d).

0 10 20 30

time [ms]

0

1

2

3

4

5

6

T
(m

=
17

4)
[K

]

Ω/Γ = 0.40

Ω/Γ = 1.00

Ω/Γ = 2.50

(d) Yb+’s temperatures (mass 174 amu), after
they started at Ti = 5 K.

Figure 3.3: Simulation results showing the effect of rogue Yb+ ions on the tempera-
tures of the Yb+ ion cloud. Results were obtained using 299 CHDBrI+ and 701 Yb+

ions in a trap with secular frequencies (8.5, 8.5, 1.5) kHz. The right plots show Yb+

temperatures, averaged over 4 different initial conditions, for 3 different laser intensities
represented by line colors. The left figures show animation snapshots from the end of
2 selected simulations, with red arrows showing the laser cooling intrusion angle. In
the top figures, the initial temperature is Ti = 10 K, whereas in the bottom figures it
is Ti = 5 K. Rogue Yb+ ions are most apparent in figure (a).

35

0 20 40 60 80 100

Kinetic Energy [Kelvin]

10−4

10−3

10−2

10−1

100
P

ro
b

ab
ili

ty
Ω/Γ = 0.40

Ω/Γ = 1.00

Ω/Γ = 2.50

Figure 3.4: Histograms of Yb+’s kinetic energies of the last 3ms of the cooling period
shown in figure 3.3b. The orange Ω/Γ = 1 line shows the energy distribution depicted
in figure 3.3a. Energies above 100 K are not shown due to large statistical uncertainties
(relative errors

√
N/N > 0.5).

issue for sympathetically cooling the CHDBrI+ ions, as it might still be possible to cool
it efficiently. The sympathetic cooling results, also with only r− laser are shown in the
next section.

3.2.2 Sympathetic Cooling with Varying Intensities

In figure 3.5 we can see the CHDBrI+ ions’ temperatures for initial temperatures
{5, 10}K, and with a different color per laser intensity. It seems that in this range
of intensities (targeting only Yb+ ions of course), one can conclude that a stronger
laser helps cooling. This is easily justified by expression 2.16 of the laser cooling force
introduced in section 2.2, and also by the phenomenon of power broadening [Ste24a].

A more intriguing phenomenon we noticed in the Ω/Γ ≥ 1 lines of figure 3.5 is the
inconsistent cooling rates (slopes). The descent is steeper when starting from lower
initial temperatures, and the cooling rate appears to depend on the initial temperature
rather than the instantaneous temperature. Figure 3.6 demonstrates this hysteresis
effect by comparing the Ω/Γ = 1 simulations from both initial temperatures.

We see in figure 3.5 that when the CHDBrI+’s temperature starts at Ti = 10 K, the
rate is moderated when it reaches Ti = 5 K, whereas the rate is higher when it starts at
Ti = 5 K initially! We identify this phenomenon as hysteresis - the CHDBrI+’s cooling
rate seem to depend on the initial temperature on long time scales, and that limits
their cooling rate.

Our attempts to fit our results to the models presented in section 2.3 failed due to
this hysteresis. We managed to identify the root cause for the conservation of energy,
when we looked at the animations, as described in the next section.

36

0 5 10 15 20 25 30 35

time [ms]

2

4

6

8

10

T
(m

=
2
2
2
)[

K
]

Ti = 10.00[K]

Ti = 5.00[K]

Ω/Γ = 0.25

Ω/Γ = 0.40

Ω/Γ = 0.55

Ω/Γ = 0.70

Ω/Γ = 0.85

Ω/Γ = 1.00

Ω/Γ = 2.50

Figure 3.5: The CHDBrI+ ions’ temperatures, starting in initial temperatures
{5 K, 10 K}, and in various laser intensities.

3.3 Angular Momentum Conservation

As depicted in figure 3.7, we noticed that many gas-phase CHDBrI+ ions are rotating
around the crystal. Their rotation axis is the z axis, which is also the symmetry axis
of our cylindrically symmetric trap, meaning fx = fy > fz.

This collective movement around the z axis limits the sympathetic cooling rate be-
cause the rotating ions can rotate for long periods of time without losing kinetic energy.
This occurs because the Coulomb crystal is smaller in comparison to the sympathet-
ically cooled ion cloud, and can only exert radially directed forces on the ion cloud.
This is the main missing piece in Baba & Waki’s model described in section 2.3 - the
angular momentum is not treated explicitly in their model, and this behavior is not
detected.

Baba & Waki’s sympathetic cooling rate depicted in figure 2.11a, does state that for
very low Tlc the sympathetic cooling rate is suppressed. However we identify it to be
strongly dependent on the way the sympathetic cooled ions’ velocities are distributed
(with or without a collective rotation around the z axis), and not only on Tlc and Tsc.
Most importantly, what limits the cooling rate is the changes the velocities’ distribution
goes through, and that depends on the initial conditions for time scales of at least 10 ms
- hence we identify this as hysteresis.

Since the effectiveness of sympathetic cooling naturally depends on the ion-ion colli-
sion strengths, we tried to increase the secular frequencies, to strengthen the collisions.
We scanned multiple sets of trap frequencies, all with a cylindrically symmetry, and

37

0 10 20 30 40 50 60 70

time [ms]

2

4

6

8

10

T
(m

=
2
2
2
)[

K
]

Ti = 10.00[K]

Ti = 5.00[K]

(a) CHDBrI+ temperature evolution for simulations starting at Ti = 5 K and Ti = 10 K, both
with Ω/Γ = 1. The Ti = 5 K curve has been shifted forward in time by 37.0 ms to align with
the point where the Ti = 10 K simulation reaches 5 K. The steeper slope of the blue curve
demonstrates that ions starting at 5 K cool faster than ions that have cooled down to 5 K from
10 K - a hysteresis effect where cooling rate depends on thermal history.

0 5 10 15 20 25 30

Kinetic Energy [Kelvin]

10−3

10−2

10−1

100

P
ro

b
ab

ili
ty

Ti = 10.00[K], | ← 11→ |
Ti = 5.00[K], | ← 1→ |

(b) Kinetic energy distributions of CHDBrI+ ions comparing two scenarios at different times.
Orange: ions that started at Ti = 10 K sampled at t = 27-30 ms (marked | ← 11 → |). Blue:
ions that started at Ti = 5 K sampled at t = 3-6 ms (marked | ← 1→ |). Despite both having
mean temperatures of approximately 5 K, the distributions have different shapes, explaining
the different cooling rates observed in figure 3.6a, specifically at t ≈ 42ms. Energies above 34 K
are not shown due to large statistical uncertainties (relative errors

√
N/N > 0.4).

Figure 3.6: Hysteresis in sympathetic cooling of CHDBrI+: cooling rate depends on
initial temperature. Simulations show that CHDBrI+ ions cool faster when starting
at Ti = 5 K compared to ions that cooled from Ti = 10 K to the same temperature.
The energy distribution comparison in figure 3.6b reveals that this effect arises from
non-Boltzmann distributions that persist from initial conditions.

38

Figure 3.7: A snapshot of an animation in which one can clearly see the ions are rotating
around the z axis - which is also the symmetry axis of the cylindrically shaped trap.

tc[ms] ts[ms] Ω/Γ δ/Γ Laser’s (θ, ϕ)∗

30.0ms 6.0ms 1 -2.6
r^- 67.5 0
r^+ 112.5 0
e^- 45 -45

Table 3.4: Parameters common for the multi-dimensional scan of trap secular frequen-
cies and initial temperatures (Ti)

the results are described in the next section.

3.4 Varying Secular Frequencies

In this scan of many different trap frequencies, we wanted to eliminate the effects of
rogue Yb+ ions we saw on section 3.2. We did that by ensuring they are all cooled
almost instantly, using multiple high intensity lasers. We also chose secular frequencies
with similar ratios between fx = fy and fz - to reduce the risk to mix effects related
to the trap’s eccentricity. Lastly, these simulations had 299 CHDBrI+ ions, 701 Yb+

ions, and the parameters presented in table 3.4.
In all of these simulations we had 4 different initial conditions per trap and initial

temperature. We found consistently rogue Yb+ ions only for fr = (8.5, 8.5, 1.5) and
fr = (17, 17, 3). Their amounts for for these traps, with Ti = 10 K was (respectively)
7.25± 2.3 and 5.5± 1. The amount of rogue Yb+ for Ti = 20 K, was roughly twice as
much.

Never the less, the lower amounts of rogue Yb+ ions is observable in their tempera-
tures, as depicted in figure 3.8. The absence of rogue Yb+ ions in the traps given there,
allows us to observe fast and efficient laser cooling in the presence of a sympathetically
cooled ions, with rates of almost 1kHz1.

1Calculated with PieceWise Linear Fits [JV19].

39

(a) Positions at the end of a simulation, with
no rogue Yb+ ions outside the crystal, and
arrows depicting the multiple laser beams
used in these simulation.

0 10 20 30

time [ms]

10−2

10−1

100

101

T
(m

=
17

4)
[K

]

fr = (15, 15, 2.5)

fr = (5.5, 5.5, 1)

(b) Temperatures of Yb+ ions when no rogue
Yb+ were observed, and hence are all fully crys-
tallized. The initial temperature is Ti = 20 K
and we reach the sub-kelvin regime in less then
10 ms, with the presence of CHDBrI+. The
exact rates for the 1st piecewise linear fit seg-
ments, are 933.7(3.9)Hz & 986.1(5.4)Hz for fr =
(15, 15, 2.5) & fr = (5.5, 5.5, 1) respectively.
The lower steady-state temperatures observed
for fr = (5.5, 5.5, 1) are probably due to the
weaker trap inducing less collisions.

Figure 3.8: Temperatures of Yb+, along with a positions snapshot of fr = (15, 15, 2.5)
(in kHz).

40

0 5 10 15 20 25 30 35

time [ms]

0

2

4

6

8

10

T
(m

=
2
2
2
)[

K
]

Ti = 10.00[K]

Ti = 5.00[K]

fr = (2, 2, 0.5)

fr = (5.5, 5.5, 1)

fr = (8.5, 8.5, 1.5)

fr = (12, 12, 2)

fr = (15, 15, 2.5)

fr = (17, 17, 3)

Figure 3.9: Comparison of CHDBrI+ temperatures, with Ti ∈ {5, 10}K, and many
different traps varied by color. As always, ion trap’s frequencies are in kHz. RF
Heating is also observed for the strong traps, especially when we start at Ti = 5K, and
is explained well in literature [vMHG+22; OMS96].

The next thing we show, is how much better is the sympathetic cooling with the
stronger traps. In figure 3.9 we see a similar T (t) plot with various colors and markers
per traps and initial temperatures, respectively. Clearly using a stronger trap helps for
most of the simulated scenarios, especially with high initial temperatures. This rule of
thumb is intuitive since higher secular frequencies induce stronger collisions between
CHDBrI+ ions and the ion crystal.

However, with Ti = 10 K, and comparing fr = (17, 17, 3) v.s fr = (15, 15, 2.5), we
observe a violation of this rule of thumb. Our best explanation for this violation is the
5.5±1 rogue Yb+ ions we counted earlier for fr = (17, 17, 3), which seem to undermine
the sympathetic cooling.

When comparing fr = (5.5, 5.5, 1) v.s fr = (8.5, 8.5, 1.5), we don’t see such a vi-
olation, even though for fr = (8.5, 8.5, 1.5) we see even more rogue ions - 7.25 ± 2.3.
We think that the higher secular frequencies, inducing stronger CHDBrI+ collisions
compete with the disturbance of the rogue Yb+ ions.

These results are summarized in figure 3.10 in the following way: We normalize the
final temperatures (Tf) of the CHDBrI+ ions to the temperatures before cooling.2 This
gives us a dimensionless scalar out of every simulation, which is plotted as a function of
the trap frequencies, with colors per Ti. The bare difference we see between the points
of fr = (15, 15, 2.5) v.s fr = (17, 17, 3), is well explained also by the rogue Yb+ ions
discussed earlier, observed consistently in all simulations with Ti ≥ 10 K.

2denoted Ts, not Ti - see section 2.5.5.

41




2
2

0.5







5.5
5.5
1







8.5
8.5
1.5







12
12
2







15
15
2.5







17
17
3






fx
fy
fz




fr[kHz]

0.2

0.4

0.6

0.8

1.0

(T
f
/
T
s
)

(m
=

22
2)

Ti = 5.00[K]

Ti = 10.00[K]

Ti = 20.00[K]

Figure 3.10: Simulation results of the dependence of the sympathetic cooling rate of
the secular trap frequency and the initial temperatures. The plot shows higher cooling
rates for higher trapping frequencies. Both Tf & Ts were calculated by averaging over
the temperatures in the last quarter of the cooling and stabilization times, respectively
(for more details see section 2.5.5). The errors of each temperature was calculated via
standard deviation of the temperatures vectors. A total of 6 · 3 · 4 = 72 measurements
are presented here, for 6 traps, 3 initial temperatures, and 4 different initial conditions.

42

Chapter 4

Conclusion & Outlook

The software developed for this thesis has enabled us to explore phenomena that were
hard to anticipate, and hard to analytically model. These include:

• Choosing wisely laser cooling intrusion angles is significant.

• Rogue laser-cooled ions lead to a kinetic-energy distributions that don’t follow
Boltzmann statistics.

• Angular momentum conservation of the sympathetically cooled ions occurring
outside the atomic crystal, limits their cooling rate. This is a finite size effect of
the ion crystal.

• The sympathetically cooled ions’ conserved angular momentum, depends indi-
rectly on their initial temperature. We identify this phenomena as hysteresis or
an Mpemba effect, because the cooling rate depends on the energy distribution,
which could be a remainder of the initial conditions.

• Increasing the trap’s secular frequencies, seem to help overcome the angular mo-
mentum conservation limit, by inducing more frequent collisions with the cooled
crystallized laser cooled ions.

Additionally, Baba & Waki’s analytical model [BW02a], provide useful insight into
the temperature dynamics of sympathetic cooling. However, since their model focuses
primarily on temperature evolution, they do not account for conserved quantities such
as angular momentum, and therefore cannot describe the Mpemba effect or hysteresis
phenomena we observed.

Outlook

• Using a non-isotropic trap can reduce angular momentum conservation, and can
be simulated without further modifications to the software. These results could

43

inspire experimentalists to implement non-isotropic traps which might enhance
sympathetic cooling rates.

• Modeling the angular momentum conservation in cylindrically symmetric traps
might be feasible, using a T = 0 K ion crystal, surrounded by a dilute cloud other
ions. A reliable model for the ion crystal size is available in the literature [HA91]
and can be generalized to non-spherical traps.

• Single-species laser cooling can be further optimized using our software. Given
that the cooling force 2.16 depends on velocity, it would be interesting to explore
time-dependent modulations of detuning or intensity to further enhance cooling
rates.

44

Appendix A

More Coulomb Energies
Dependence Figures

101 102

τ [Kelvin]

102

103

N

1

2

3

4

5

E
c
/N
/τ

Figure A.1: Same as figure 2.4, but with a normalization to τ . Added here to show
how Ec/N can exceed τ for some values of (τ, N).

45

101 102

τ [Kelvin]

102

103

N

0.02

0.04

0.06

0.08

0.10

σ
/
µ

Figure A.2: The relative standard deviation received when generating figure 2.4. Nat-
urally, in low N (low-densities), the randomness is larger.

101 102

taus

102

103

io
n

s

#iterations

5

14

23

32

41

50

59

68

77

86

Figure A.3: The number of iterations that had to be performed to generate each point in
figures 2.4. Almost always 5 random number generations is enough to reach a relative
standard deviation smaller then 0.12, however sometimes a few more iterations are
needed, naturally for small N (low densities).

46

Appendix B

Simulation Software Manual &
Technical Details

The repository of the Simulations’ software code is available online at: https://
gitlab.com/doronbehar/lab-ion-trap-simulations. It consists of several Python
executable scripts, each with a different role. The main important scripts are sim.py
and plot.py. Running ./sim.py creates a set of .h5 suffixed files (in HDF5[The]
format), and running ./plot.py with the .h5 files as arguments opens an interactive
window for viewing the results, as depicted in figure B.1.

The following sections will simply describe each file in the repository, hopefully in
an order that will make it easy to understand the complete architecture.

B.1 flake.nix: Setting up a Development Environment

Before we’ll begin describing the actual Python scripts, it is important to setup a proper
development environment for running the scripts. The best software I recommend for
managing the development environment on a per-project basis, is the package man-
ager Nix[DT]. Nix is a functional package manager [Dol06], meaning it is capable of
producing (packages and) development environments from a pure set of inputs. The
intention is to increase the likelihood that the resulted development environment will
be reproducible [Del24] on any computer running Nix.

The main file that defines the development environment is flake.nix. If you have
nix installed you should be able to run nix develop1 in a command line shell and
enter a Bash shell that would be capable of running any script in the repository just
like I did - with the same versions of Python dependencies, and same LAMMPS version
and build variant.

Don’t decry these development environment instructions. Many crucial details and

1Don’t forget to enable the (currently, as of writing) experimental-features = nix-command
flakes. See the relevant Nix’ Manual page for more details.

47

https://gitlab.com/doronbehar/lab-ion-trap-simulations
https://gitlab.com/doronbehar/lab-ion-trap-simulations
https://nix.dev/manual/nix/stable/contributing/experimental-features

features in the Python scripts depend on specially built variants of the Python depen-
dencies. Worth noting, are:

• 2 important Matplotlib patches. Without 1 of the patches, ./plot.py won’t work
at all.

• An unreleased version of a Python dependency called pint, including another
patch for it not accepted upstream.

• The lammps package built with very specific CMake flags that make the simula-
tions run faster.

• A TeXLive distribution with specific dependencies that are necessary to create
all the LaTeX generated texts in the plots.

Nix can be installed on Darwin, and any GNU/Linux distribution, including Win-
dows’ Subsystem for Linux (WSL). I personally used NixOS on (WSL) on the office’s
computer, with this OS configuration, which also includes a few NVIDIA hardware set-
tings which might be relevant if you want to actually enjoy GPU support by LAMMPS.
The fact the operating system’s settings are declared and are reproducible just as the
development environment, is another outstanding feature of Nix.

To reduce the hassle of running nix develop every time you enter the repository’s
directory, I recommend using direnv, which is also supported on the same platforms
as Nix. The following sections assume you have a working development environment
set up.

B.2 sim.py

sim.py is the script that actually calls LAMMPS’ shared object2, and runs the sim-
ulation, while also saving the results into a set of .h5 files. The full set of available
command line options is printed when you run ./sim.py --help, and is explained in
general in this section.

B.2.1 Parameters

The total amount of simulation parameters is approximately 22. Most of them are of
type float, some are booleans, and some are integers. Although some of the parameters
are constants for most simulations, simply iterating the multidimensional space of the
rest of the parameters is computationally incomprehensible. The sensible thing to do
instead is to study the effects of a few parameters one by one, while other parameters
are constant.

2Also referred to as DLL in MS windows terminology.

48

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/nix-community/NixOS-WSL
https://gitlab.com/doronbehar/nixos-configs/-/blob/b540a8fef332ff64d0ae52a67ef96758b7d2b396/flake.nix#L104-134
https://direnv.net/

./sim.py is basically built with a command line option per parameter, enabling
you to choose which parameters to scan. Any command line option not specified will
prompt you to choose the values to iterate over interactively, or a default value will be
chosen.

Scanning-Enabled Parameters

Most of the float typed parameters’ possible values are defined in PARAMETERS_INFO de-
fined in physical_constants.py, along with complementary metadata per parameter.
For example, the set of initial temperatures is marked as T_init, and possible values
are [5, 10, 20, 40, 80]K, defined using numpy.geomspace. Similar ranges are defined for
other parameters.

When you run ./sim.py and you want to choose specific values of a certain float
like parameter, you use the indices of the array’s values defined in PARAMETERS_INFO.
For example to scan the initial temperatures [10, 40]K, you would use --T_init 1 3.
If you want to specify a certain range of values, you can use Bash shell syntax to choose
e.g [5, 10, 20]K with --T_init {0..2}, which simply is expanded by Bash to --T_init
0 1 2. If the option --T_init is not specified at all, you will be prompted to pick the
temperatures you wish to simulate over.

To view all available parameters and their values, ./sim.py --list can be used,
which lists all available parameters to the terminal in 2 tables. Tables B.10 and B.11
serve as a copy of these tables. Eventually, to run scans with a sensible amount of
varying parameters (2-3 dimensions), you’d need to write ./sim.py commands with
lots of options, every time. This could be a nightmare without using Shell command line
history, accessible with the keyboard’s & keys. For a more versatile and efficient
command line history browsing, I’d recommend using fzf with this Bash configuration.

Lastly, the --seed parameter allows one to choose a specific random number genera-
tion (positive integer) seed. Multiple values are treated as multiple initial conditions to
perform - hence increasing the dimensionality of the scan. A negative integer argument
like e.g --seed=-5, means ’take 5 random seed integers’.

Single value Parameters

The following parameters always get a single value, even if not specified explicitly on
the command line:

• --naive-freqs (boolean): Put forces that generate
√

m1/m2 secular frequencies
(default: False)

• --micromotion (boolean): Enable RF like micromotion (default: True)

• --cooler {Be,Ca,Yb,Ra}: Which cooler ion to use (default: [Yb])

• --time-stabilizing: How much time before cooling (default: [5.0ms])

49

https://github.com/junegunn/fzf
https://github.com/junegunn/fzf/blob/d24b58ef3fc6d6d2c43e07a44e0f757b9bdfbeff/shell/key-bindings.bash#L133-L136

• --time-cooling: How much time after cooling (default: [15ms])

• --rf-divisor: How many timesteps to put in a single RF cycle (default: [1597]),
see also section 2.4.

• --windows-attenuation: By what fraction the intensity decreases after passing
2 windows (default: [0.7])

• --approximate-laser-force (boolean): Simulate laser cooling with the approx-
imated α · v-like expression

• --offset x[mm] y[mm] z[mm]: Put the ion cloud in an offset from the center
(default: [0.0, 0.0, 0.0])

./sim.py doesn’t allow scanning over values of these parameters. However if you
really want to you can use GNU’s parallel[Tan11] program to iterate such values
artificially. Below are a few example usages:

parallel --tmux \
./sim.py \

--x_secular_freq 16 --y_secular_freq 16 --z_secular_freq 2 \
--rf_freq 2 \
--omega 7 --delta 13 --laserAngles 22
--cloud 10 --total 9 \
--T_init 1 \
--seed {90..93} \
--time-stabilizing 15 --time-cooling 0.1 \
--rf-divisor ::: 1301 1381 1427 1523 1583

This command tests the effect of the RF divisors on the stability and convergence
(see 2.4). Note that --seed {90..93} is expanded by the shell and eventually inter-
preted as --seed 90 91 92 93, which means: Run each simulation with 4 different
initial conditions defined by the seeds 90 − 93. Using a constant set of seeds, and not
-seed=-4, makes sure that every process initiated by GNU parallel will use the same
4 initial conditions, and not 4 randomly picked initial condition seeds (picked by each
./sim.py process).

parallel --tmux \
./sim.py \

--x_secular_freq 16 --y_secular_freq 16 --z_secular_freq 2 \
--rf_freq 2 \
--omega 7 --delta 13 --laserAngles 22
--cloud 10 --total 9 \
--T_init 1 \

50

--seed {90..93} \
--time-stabilizing 15 --time-cooling 0.1 \

::: --{no-,}naive-freqs ::: --{no-,}micromotion

In the above, the 2×2 boolean matrix of naive_freq and micromotion is measured.
A similar command was used to generate figure 2.8. The {no-,}OPTION syntax is
expanded by the shell to --no-OPTION --OPTION, and GNU parallel runs 1 ./sim.py
process with --no-OPTION and another with --OPTION, and does the same for the other
list of arguments appearing after the 2nd :::.

Other command line options

Besides the obvious --help option, a few more non physical options of ./sim.py are
of worth noting:

• --date: When creating .h5 files, part of the files’ name include a date string.
When you want to easily allocate the files later, this option can be used.

• --coulomb: When simulating, measure the coulomb energies into a dedicated
HDF5 group. This data can be plotted in a separate figure window with ./plot.py
--show-coulomb.

• --high-resolution: When simulating, extract the velocities and the positions
every simulation step, and not only in the beginning of every RF cycle. NOTE
this makes the simulation run much slower due to slow excessive disk writing.

• --list: Don’t actually simulate, only list the available parameters. Essentially
prints into the terminal tables B.10 and B.11.

• --cores: How many CPU cores to use when distributing jobs, defaults to the
number of CPU cores available on your machine. See section B.2.4 for more
details.

B.2.2 Managing Simulation Parameters with xarray

Since we have so many simulation parameters, and we are interested in manipulating
their results in various ways, it can be incomprehensibly hard to do it with traditional
multi-dimensional Numpy arrays. Almost all of the repository uses xarray[HH17] to
manage arrays of 2 dimensions and more. With xarray you can be absolutely sure you
are performing operations on the right dimensions, no matter how they are ordered
internally.

Additionally, xarray-like objects can be saved to files of various formats, like
HDF5[The], Zarr3 and more. Specifically in this project, the HDF5 format was picked,
because:

3https://zarr.readthedocs.io/en/stable/

51

https://zarr.readthedocs.io/en/stable/

• (Like Zarr), it has a concept of Groups, allowing you to save the xarray objects
into 1 group, and other data in another group.

• In comparison to Zarr, HDF5 files are single files, and not directories, making
them less prone to corruption due to cloud storage sync conflicts, and manual
recursive copying issues.

• Can be faster then Zarr when reading data that needs to be read fast enough for
animations like in figure B.1.

There are also a few worth noting advantages of Zarr over HDF5:

• The parallel writing support, which could have been an advantage for section B.2.4.

• Somewhat related to the above advantage, and also explained in section B.2.3,
appending simulation data like positions and velocities can be done a bit more
efficiently with Zarr, as this operation doesn’t require extending the file and make
sure all the pointers in the file point to the correct place.

These Zarr advantages were realized in a late part of the research period, and were
not assessed thoroughly.4

The format in which simulations results were saved is described below:

• Each scan of parameters is saved to a single HDF5 file.

• The parameters scanned over are defined via an xarray.Dataset saved into an
HDF5 group named ranges.

• Each dimension in the dataset is named like the parameters in tables B.10 and
B.11, as described in section B.2.1.

• Each scanning point, has a hash, calculated5 from the dictionary of input param-
eters values.

• The hash is part of the saved ranges dataset, and it serves as a link to actual
simulation measurements of that set of input parameters.

• Per hash h, the HDF5 group measurements/{h} holds all the simulation’s raw
results, in a hierarchical format described in the next section.

4Also due to rough edges with the Zarr 2.18 → 3.0 version update, that happened around that time.
5Using DeepHash.

52

https://zepworks.com/deepdiff/current/deephash.html

B.2.3 measurements/ HDF5 groups format

The raw simulations’ results are not suitable to be modelled as an xarray object. They
are calculated much more dynamically, and include much more data in comparison
to the xarray.Dataset saved in the ranges HDF5 group, and hence invite a more
dynamic format that allows appending and truncating data without loading it all into
memory. The next subsections describe the HDF5 ’paths’ to the HDF5 datasets.6

times

The first direct HDF5 dataset in the measurement group: A simple, usually7 linearly
spaced time stamps, that always starts with 0, and is appended floating point numbers
as the simulation’s time proceeds.

mass=AMU HDF5 Datasets

Since we are interested in measuring every ion species separately, every HDF5 group
described in the next subsections, contains at least 1 HDF5 dataset in a path that
ends with mass=AMU. If the simulation’s cloud×total ∈ (0, 1), the paths mass=X &
mass=222 will be included - for the masses of the cooler and target CHDBrI+. It may
also be that cloud×total ∈ {0, 1}, and then there will be only a single mass=AMU
there.

The cloud parameter explained in section B.2.1, and the --cooler parameter in
section B.2.1. Table B.11 lists all possible amounts of coolers v.s targets, including
those in which cloud×total ∈ {0, 1}.

positions prefixed Groups

There are 3 types of positions arrays, each with shape (M, N, 3), where N is the number
of ions of the species, and M is the number of time samples. They are saved under the
following groups:

• positions_rf_min: The positions measured when the RF oscillation is at it’s
minimum.

• positions_rf_max: The positions measured when the RF oscillation is at it’s
maximum - at the middle time step of the oscillation.

• positions: When --high-resolution is not used, the arrays in this group are
identical to those saved to positions_rf_min. If it is used, the positions in every
time step are saved there.

6Note the slightly confusing terminology: An xarray.Dataset is not an HDF5 dataset - these are 2
completely different Python objects.

7Why not always? See section B.3

53

https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html
https://docs.h5py.org/en/stable/high/dataset.html

velocities prefixed Groups

Very similarly to the positions prefixed groups, the analogous velocities groups are
saved as well. An additional group named velocities_rf_averaged is also saved, and
it includes the per particle, per axis velocities averaged over an RF cycle, as described
in section 2.5.3.

The temperatures Group of Groups

Per every velocities and positions related group of HDF5 Datasets, multiple 1
dimensional HDF5 datasets of length M are saved into the temperatures group. Given
a T_coord & T_rf_type, there are 5 T_methods one can use to get a temperature, as
described in section 2.5.2 and table 2.2. The full template of the paths to these per
mass HDF5 datasets, under the measurements/{h} group, is:

temperatures/{T_coord}_rf_{T_rf_type}_{T_method}/mass={AMU}

Note that no temperatures/potisions_rf_averaged* datasets are saved, as ex-
plained in section 2.5.4.

B.2.4 Scan Parallelizing Algorithm (parallel_hdf5_splitting.py)

Running a single simulation of 20 − 30ms can take ≈ 30min. Hence scanning can ob-
viously take days, depending on the dimensionality of the scan. A great way to speed
up such scans is via distributing scanning points to different CPU cores. The algo-
rithm described below, implemented in parallel_hdf5_splitting.py8, is in charge
of deciding how to distribute the scanning points to CPU cores.

The splitting algorithm is best explained using examples. In table B.1, C is the
argument given to ./sim.py --cores, that defaults to the number of CPU cores on
the machine (usually 8 or 16). C∗ is the resulted number of CPU cores the scan is
distributed to, decided by the algorithm (C∗ ≤ C).

The definition of C∗ is simple to explain in general: If we’ll denote T to be the total
number of scanning points, C∗ is the highest divisor of T such that C∗ <= C. The
progress bars ./sim.py creates, are aware of the sub processes’ progress, and updates
them accordingly.

When ./sim.py runs, it creates multiple files in the following scheme:

scan@{basic_parameters_hints}@vars=({v1,v2,v3})@{date(core#)}.h5

Where:

• basic_parameters_hints is a comma separated list of param=value strings of
specific parameters worth mentioning early upfront in the file name - parameters
that should have substantial influence on the results.

8Was implemented with https://claude.ai.

54

https://claude.ai

Original Shape C C∗ Each Core’s Shape
(7, 3) 7 % (1, 3)
(7, 3) 8 7 (1, 3)
(5, 4) 5 % (1, 4)
(3, 4) 6 % (1, 2)
(12, 7) 7 % (12, 1)
(12, 8) 8 % (12, 1)
(12, 6) 8 % (4, 2)
(4, 5, 6) 10 % (2, 5, 1)∗

(2, 3, 4) 8 % (1, 3, 1)
(1, 1, 1, 1, 7, 8, 2) 7 % (1, 1, 1, 1, 1, 8, 2)

(1, 1, 1, 1, 9, 4, 5, 1, 1, 1) 9 % (1, 1, 1, 1, 1, 4, 5, 1, 1, 1)
(1, 1, 1, 1, 9, 4, 5, 1, 1, 1) 15 15 (1, 1, 1, 1, 3, 4, 1, 1, 1, 1)

(100, 100) 25 % (20, 20)∗

(11, 13) 11 % (1, 13)
(11, 13) 10 1 (11, 13)

Table B.1: Test cases for ./sim.py splitting function. C∗ = % means C∗ = C, as in
most of the cases. A shape superscripted with ∗ is marking a shape which is 1 solution
of the algorithm among a few more valid solutions possible.

• {v1,v2,v3} is comma separated list of float like parameters that were scanned,
from section B.2.1.

• date is the date specified via --date (defaults to the OS’ date).

• # is the index of the CPU core upon which these simulations were scanned.

While a scan is running, that file is added a .now-scanned suffix, to help you avoid
touching it while it runs, and the parent ./sim.py script should remove this prefix
when the simulation is finished. Unfortunately, there is a hard to debug but minor
issue with this parallelisation, that might cause this renaming to fail, but this can be
easily solved later with sim-continue.py as described in the next section.

B.3 sim-continue.py

Imagine you run a long scan that takes a day or two, and something crashes in the
middle of the night. Letting go of all the results obtained so far would be too expensive,
and if there’s a bug that caused this crash, you’d have to run the same command and
wait an insensible long time for it to happen again. This scenario invites writing a
script, named sim-continue.py that will be able to recover from such crashes, and
perhaps be able to do a bit more.

The basic recovery usage of it is:

parallel ./sim-continue.py ::: scan*.h5.now-scanned

55

Where the .now-scanned suffixed files are scan files that were not finished (or when
finished but not renamed, as described in section B.2.4). In principal ./sim-continue.py
accepts only a single .h5 file, so GNU parallel [Tan11] can very useful with it.

The next subsections, explain how to use ./sim-continue.py with successfully
finished scans - scan files ending with .h5, and a few details regarding the .h5 file
naming schema.

B.3.1 Simulating More Time then Originally Prescribed

Sometimes, you look at the results of a particular scan point with ./plot.py (see
section B.6), and you want to extract a few simulations and run them for a few more ms.
This is possible with ./sim-continue.py’s --time-cooling option, which replaces the
original cooling time with the one you specify. Likewise, for the sake of UI symmetry,
the option --time-stabilizing also exists and replaces the original stabilization time.

B.3.2 Simulating with a Finer Time Division

Another common scenario where ./sim-continue.py is very useful, is running part of a
simulation from a certain point in time, but with a higher RF divisor. You can observe
example results where this is needed in section 2.4. The relevant self-explanatory
command line options are --rf-divisor and --from. The argument to --from is a
time point in ms, rounded downwards to the nearest time point found.

B.3.3 Removing Abruptly Some Ions

One very rarely used, yet still maintained feature of ./sim-continue.py is the --remove
TYPE FRACTION command line option. Basically it enables you to remove a certain
FRACTION of the ions of group TYPE, at the time point specified by --from. Results
where this option was used where not presented in the thesis, but it was still used
during the research period to debug several physical phenomena, now well understood.

B.3.4 File Names Details

When ./sim-continue.py is given an unfinished .h5.now-scanned file path, it copies
it to a file with the extension .h5.now-appended, and tries to fill it. Then when it
finishes, the .h5.now-appended file is renamed to .h5.

Somewhat similarly, when ./sim-continue.py is given a (hopefully valid) .h5 suf-
fixed file, a .h5.now-appended file is still created and filled to, and renamed upon
completion to .h5. However, for a valid .h5 file, and when one of the --time-* or
--rf-divisor options are used, the basic_parameters_hints part of the file name9

will change, and thus ensure you won’t override the original .h5 file.
9Explained in section B.2.4

56

B.4 sim-reconcile.py

Another likely scenario one may encounter when researching, is best explained in the
following example: Assume you ran the scans marked in table B.2, using e.g a 2 dimen-
sional scan of parameters (A, B) ∈ {a1, a2}×{b1, b2}, and then a 1 dimensional scan of
B ∈ {b2, b3} with A = a3. You may suspect there’s some coupling between parameters
A and B, and you want to get a full picture of the dependence. Therefore you wish to
simulate the missing configurations, marked with × in table B.2.

b1 b2 b3

a1 ✓ ✓ ×
a2 ✓ ✓ ×
a3 × ✓ ✓

Table B.2: Example of partially overlapping scans requiring reconciliation. ✓ indicates
completed simulations; × indicates missing ones to be filled.

Since there is no guarantee the collection of missing scanning points iterated is a
full grid, the file name template of scans generated by ./sim-reconcile.py is:

scan@reconciling@vars=(...)@{date}.h5

Where the only dynamic part of it is {date}, and the .now-scanned suffix is added
during the scan (and removed when it finishes successfully). In principle, it should be
possible to parallelize this scan too, but this feature is not yet implemented.

B.4.1 Merging Threshold

When ./sim-reconcile.py, and other scripts described further on, read multiple .h5
files, they merge all scans’ ranges xarray datasets, using the default join="outer"10

argument, which means: Unionize all simulations’ input parameters, and fill the missing
values of data variables with NaN. In our case, our only data variable is called hash.

Now what if 2 scans have cooling times of 15.05ms and 15.0ms? The naive behavior
of xarray would be to consider these two values different. Unfortunately, this can
cause the merged xarray.Dataset to be very sparse, when in fact we’d probably like
to consider these 2 points the same. This is why merging scans’ ranges parameters
is done using a non-trivial merging algorithm11 called ’smoothly merging datasets’,
described briefly in the next paragraph.

Per dimension, compute a ’cluster’ of distances between the values normalized to
their mean.12 Now if there are 2 values in the cluster in a distance d apart, they are
considered the same. Then, the only thing left is to group the values considered the

10See xarray.merge documentation.
11Developed with https://openai.com/.
12Implemented with linkage and fcluster functions from scipy.cluster.hierarchy[VGO+20].

57

https://docs.xarray.dev/en/stable/generated/xarray.merge.html
https://openai.com/

same by the clusters’ into, and take the only valid hash we find there among NaN
hashes. If multiple non-NaN hashes are found in each such closely located parts of
the cluster, an error message is raised. The d parameter defaults to 0.01, and can be
modified in the command line with --merge-threshold.

B.5 time-plot.py

The most basic plotting functionality is plotting multiple simulation results as a func-
tion of time, on the same axes. The per spatial axis’ standard deviation, and the
temperatures, are the only time dependent variables calculated by the code, as intro-
duced in section 2.5 These are selected via the -y command line option, and it defaults
to temperatures.

Several worth noting features of time-plot.py (common also to plot.py) are ex-
plained in the next subsections.

B.5.1 Handling Multi-Dimensional Scans

Differentiating between the lines is done by the script via the following line properties,
termed displayers:

• Colors: (easily differentiable:13)

• Line Styles (, , , etc.)

• Markers (×, ◦, · etc.)

The ranges xarray.Dataset saved in each .h5 file given as argument, is read and
merged before the dimensions and displayers are iterated. All non-trivial dimensions
of the merged xarray.Dataset can be represented by any of the above displayers. Be-
sides the standard simulation parameters, the masses are also considered as a potential
dimension to iterate over. If a mixed species cloud was simulated, a mass dimension
is added, and it can be displayed by one of the displayers above. An algorithm14 to
choose a displayer per a dimension, is described below.

The displayers itemized above are ordered according to their clarity when displayed
on axes, with the clearest displayer being the colors. The non-trivial dimensions of the
scans, including the mass dimension, are also ordered by their size, starting with the
largest. Then the algorithm matches each dimension to each displayer, until all dis-
players are consumed. When more non-trivial dimensions exist, and no more displayers
are available, the dimensions left are marked ’to be averaged over’.

An exceptional dimension in the above iteration is the initial conditions’ seed,
which the algorithm by default marks it to be averaged over. The command line

13Provided by Matplotlib via rcParams["axes.prop_cycle"].
14Also written with https://openai.com/.

58

https://openai.com/

options --color, --linestyle, --marker, --average can be used to modify the
default behavior of the algorithm, which might be a bit arbitrary if dimensions of the
same length are in the scan.

./time-plot.py prints to the terminal a table of the matching made between dis-
players and dimensions, along with their lengths. Tables B.3, B.4 and B.5 demonstrate
how this matching is printed, for several different displayers command line arguments.

Ti[K] Ω/Γ Seed tc[ms]
coordinate length: 5 9 3 2
displayed by: linestyle color average marker

Table B.3: The default match made by the plotting scripts between displayers and
xarray.Dataset dimensions, for a scan with only 1 mass.

Ti[K] Ω/Γ Seed tc[ms]
coordinate length: 5 9 3 2
displayed by: linestyle color average marker

Table B.4: The dimensions-displayers match for the same .h5 files as in B.3, but when
--color omega was given.

Ti[K] Ω/Γ Seed tc[ms]
coordinate length: 5 9 3 2
displayed by: color linestyle marker average

Table B.5: Like B.4, but with --color T_init --marker seed.

The algorithm is flexible enough to use a different displayer for a dimension if you
picked it with the command line, and never discard a displayer unless you chose enough
dimensions to --average over. Averaging over multiple dimensions is done simply via
multiple arguments to --average.

B.5.2 Handling Different Traps & Offsets (collapse_ds.py)

A common scenario one may encounter is the desire to choose a different displayer
per trap. Take as an example the secular frequencies in figure Since the trap’s secular
frequencies are modeled as 3 parameters, before even assigning displayers to dimensions,
xarray’s merging will create a large and sparse xarray.Dataset, with every possible
combination of all secular frequencies used.

The natural thing to do of course is to consider instead a single dimension per trap.
This is termed in our context as collapsing, and can be done using --collapse-trap. If
you have a scan where (fx, fy) were changed together, but fz was constant, --collapse-trap
xy can be used (xyz is the default argument).

Very similar to the trap’s frequencies, a similar --collapse-offset has the same

59

possible arguments and behavior, acting upon the offsets. This functionality is imple-
mented in collapse_ds.py and can be tested by executing it.

B.5.3 Showing pwlf Fit Results

The piecewise fit results, described in section 2.5.5, are added to the plot if the command
line options --show-fits and/or --show-regimes are used. --show-fits simply plots
the lines of the fits in addition to the raw measurements, and --show-regimes also
plots an opaque background marking the cooling regimes detected by pwlf[JV19]. Since
only 1 pair of regimes can be sensibly plotted on one axes, the fits’ break points are
averaged over all dimensions of the scans.

B.5.4 Miscellaneous Options

• Since reading multiple datasets involves merging, the same merging behavior
described in section B.4.1 is applied here, and --merge-threshold is available
as well.

• Saving the plot in any format supported by Matplotlib is possible using --save-fig,
with the format specified by the given file’s extension. If ’-’ is used as a file path,
the contents of a PDF file containing the plot are printed to stdout, useful for
piping it straight to the clipboard.

• --wfrac Takes the intended LaTeX \linewidth fraction used when including the
saved figure.

• --hprop Takes the height/width proportion to use in the generated figure.

• --always-show: If saving, open the figure before finishing.

• --legend: When saving, put legend in the specified location. Use ’none’ to
disable legend altogether.

• --legend-columns: Specify the amount of legend columns to use. Relevant only
when saving, and when using a legend location outside and ’upper,lower’. The
default value, is picked by the maximal input datasets’ dimensions.

• --log makes the y axis scale logarithmically.

• --list makes the script not open any figure, and instead prints information re-
lated to the simulation and displaying parameters. Various formats are supported,
and can be specified as optional arguments to --list.

• --where accepts 2 arguments, a dimension, and an index of a value of a parameter.
The list of values and their indices can be printed with --list all. Choosing
multiple values v1, v2, ... of a dimension d, can be done with --where d v1
--where d v2

60

• --mass-conf allows you to reduce the results dataset by performing simple op-
erations upon the masses. One option is to use an argument of the form m=AMU
that selects the given mass. A 2nd option is performing a mathematical operation
between the light v.s heavy mass. The special argument a-h-l is useful for -y
E_c only, for showing the Coulomb interaction energy between the species. Using
this option reduces the amount of displayers required to display all dimensions
on the axes.

• --smooth smooths the time dependent data before analyzing it, using Scipy’s
make_smoothing_spline15 and given a λ parameter.

Additional optional arguments like --T_coord, --T_rf_type and --T_method are
described in table 2.2.

B.6 plot.py

plot.py is the main script with which you can view simulations’ results of any kind,
interactively, as shown in figure B.1. The basic command line usage is simply passing it
.h5 arguments. Many other optional command line arguments share the same behavior
with other scripts, as described briefly below:

• --collapse-trap and --collapse-offset work as described in section B.5.2,
though for here it is more relevant for the axes described in section B.6.1.

• --merge-threshold, --where & --list work exactly as described in section B.5.4.

• --T_coord, --T_rf_type & --T_method also work very similarly to ./time-plot.py,
and here they are relevant for axes described in sections B.6.1 and B.6.4.

B.6.1 Top Right: Summarized Results’ Dependence on Simulation
Parameters

The main purpose of ./plot.py is to display summarized simulation results, on a
single axes, as described in section 2.5.5. For a 1 dimensional scan of parameter p, the
summarized results are plotted as a function of p, where results relevant of different
masses in each simulation, are differentiated by color. This plot is termed here and in
software as x-vs-y.

Like with ./time-plot.py (see section B.5.1), each varying dimension of the scan
is attached a displayer, with the horizontal axis considered a displayer as well, termed
simply x. The x displayer is picked first - for the most varying dimension, and can be
picked manually with the command line argument -x, just like --color, --linestyle
and --marker.

15See https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_
smoothing_spline.html.

61

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_smoothing_spline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_smoothing_spline.html

Deciding which summarized results are displayed, can be done either in the GUI
via the radio-buttons found at the right-bottom, or via the command line arguments
described in tables B.6 and B.7.

-y choice Explanation Dependent Arguments
T The temperature of the clouds [Kelvin] --part
size Cloud size [mm] --axis

--part
coolFreq The cooling frequency [kHz], as calculated

by cjekel’s PWLF (PieceWise Linear Fit)
algorithm [JV19]

--regime

cloudFreq The cloud’s collective movement most
dominant frequency [kHz]

--axis
--freqMethod
--freqOperator

Ec Coulomb energies16 [eV] --part

Table B.6: Available choices for the -y argument and their meanings.

Argument Explanation
--part The simulation part in comparison to cooling time point to use

in the calculation (options: stabilizing, cooling, s-f, f/s;
default: stabilizing)

--regime The index of the cooling regime that was detected by cjekel’s
PWLF (PieceWise Linear Fit) algorithm [JV19] (options: 0, 1;
default: 0)

--axis The axis for which to focus the calculation upon (options: x, y,
z; default: x)

--freqMethod How to compute the dominant movement frequency of the cloud
(options: fft, fit; default: fft)

--freqOperator How to compute the dominant movement frequency of the cloud
(options: none, diff, ratio; default: none)

Table B.7: Arguments that other -y choices may depend upon.

Last notes:

• The x-vs-y figure can be saved to a file via the --save-fig command line option.

• If the x displayer is set by chance to the simulation parameter omega, you can
use the boolean flag --intensity to make the x axis of this figure scale like laser
intensity, as in equation 2.22.

B.6.2 Bottom Left: Scan’s Dimensions Sliders

As described in section B.6.1, multiple dimensions of the input .h5 files are attached to
displayers. Like with ./time-plot.py, the seed parameter is averaged over by default,
along with potentially other dimensions. The 3D animation (section B.6.3), and the

62

time-dependent plot (section B.6.4), always display a single simulation, which can be
picked by the sliders found in the bottom-left part of the figure.

Controlling the values of each slider can be done by clicking the mouse near a
tick, and also via the keyboard shortcuts in table B.8. The command line option
--interactive-init can be used to start the GUI in a specific state of the sliders, by
choosing interactively a specific simulation in the command line - using Beaupy17 and
iterating the non-trivial dimensions.

displayer + −

x ctrl + ctrl +

color ctrl + ctrl +

linestyle ctrl + j ctrl + k
marker ctrl + n ctrl + m
average ctrl + u ctrl + i

Table B.8: Keyboard shortcuts for iterating dimensions values, per their attachment
to a displayer. ± is increasing/decreasing the dimension’s value.

Lastly, ctrl + h can be used to save the currently focused simulation to a single
file, which can be manipulated and inspected later for various purposes.

B.6.3 Top Left: 3D Animation

The central part of the GUI is the 3D animation showing the particles’ movement in
time, of the simulation picked by the sliders. Matplotlib allows to easily changing the
view angle18, and zooming in and out19 with the mouse. A few relevant command line
options for the animation are available:

• --no-animate: Disables animation - useful when you want to observe each frame.

• --save-video: Saves a video animation of the particles moving, including the
rest of the GUI axes and other elements. To simulate a specific simulation,
--interactive-init can be used.

• --range: Specifies a limit L in mm for the 3D space, used as ±L from the origin
for all spatial dimensions.

• --positions-label: Choose a different positions label scheme. Defaults to full,
which means show what masses are trapped, and how many of them are trapped
at any given time. Other options are self explanatory: only-mass, none.

17https://petereon.github.io/beaupy/
18See https://matplotlib.org/stable/api/toolkits/mplot3d/view_angles.html
19See https://matplotlib.org/stable/users/explain/figure/interactive.html#

interactive-navigation.

63

https://petereon.github.io/beaupy/
https://matplotlib.org/stable/api/toolkits/mplot3d/view_angles.html
https://matplotlib.org/stable/users/explain/figure/interactive.html#interactive-navigation
https://matplotlib.org/stable/users/explain/figure/interactive.html#interactive-navigation

• --separate-positions-figure: Put the positions’ axes in a separate figure.
Useful for saving images of the 3D particles (projected onto 2D), in selected
points in time

B.6.4 Middle Right: Time Dependent Results

This plot is very similar to plots generated by ./time-plot.py, only that it shows
only on a single simulation - the simulation picked by the sliders. Since only a single
simulation’s results are displayed, the piecewise fits and cooling regimes are always
presented, unless the simulation is marked as ignored, in which case there are no fits
available to begin with.

The command line option --log can be used to start the GUI with this plot’s
vertical axis displayed in a logarithmic scale. When the GUI is open, ctrl + l can be
used to toggle on/off the logarithmic scaling.

B.7 histogram-plot.py

To plot the histograms in figure 3.6b, this script can be used. It acts similarly to
time-plot.py and plot.py with regards to handling of multi-dimensional scans, but
it includes one special command line option explained below.

To generate histograms with enough statistics and fine bins spacings, one has to
take kinetic energies of the particles over many time steps. The script is hard-coded to
divide the stabilization time period to 2 segments, and the cooling time period to 10
more segments. These segments are termed time windows by the script.

By default, the last cooling time window is used, but multiple time windows can be
specified by the --time-windows option, using indices starting at 0, ending at 11. When
more then 1 time window is specified, this dimension is added to the plot, and colors /
markers / linestyles can be used to vary the time windows, just like in section B.5.1.

B.8 h5doctor.py

Throughout the research period the format in which simulation results are saved has
changed a lot. To verify our scan files are valid and can be plotted, and to also apply
a sort of quality assurance, this script was written.

All modifying actions this script may perform, depend on the input .h5 files suc-
cessfully going through a check phase. The ./h5doctor.py check command can be
used to perform only a check, which also verifies many HDF5 attributes related details
are intact. Other actions possible of h5doctor.py are described in the next sections.

64

B.8.1 Modifying Parameters

A particular kind of change the simulations’ scans can go through, is changes to the
ranges xarray.Dataset, described below:

• Parameters renamed.

• A floating point parameter was rescaled by a scalar.

• A new parameter added (happened often).

When a new parameter is added, it is likely that old scans are still valid, but their
ranges simply don’t include that parameter but had it set to an implicit value. All of
these scenarios (and a few more), are handled by ./h5doctor.py.

Since the ranges xarray.Dataset also includes a hash xarray.DataArray, calcu-
lated based on the simulation’s parameters, ./h5doctor.py is also carefully changes
these hashes’ values, and renames the pointers in the measurements/ HDF5 groups
(see section B.2.3).

B.8.2 Coulomb Energies

When ./sim.py is used with --coulomb, it saves a few time-dependent Coulomb en-
ergies HDF5 datasets, that can be plotted with ./plot.py --show-coulomb. Usually
these energies are not very interesting, but sometimes, it can be interesting to look
at the Coulomb energies after the simulation finished. Without requiring simulating
everything again with ./sim.py --coulomb, ./h5doctor.py coulomb --save can fill
in those HDF5 datasets based on the positions.

Worth noting: ./sim.py --coulomb is using a LAMMPS[TAB+22] function to cal-
culate these energies, whereas ./h5doctor.py coulomb uses Freud[RDH+20] to iterate
all the pairs and sum the 1/r distances. Hence, by default this subcommand verifies
there is a small numerically negligible difference between these two calculation methods
and thus verifies the usage of both of these functions.

B.8.3 Ignoring Measurements

As described in section 2.4, sometimes only after a long scan has finished, you find
out a certain specific simulation has had a numerical error due to a too coarse RF
divisor, which change the summarized results so substantially, that they should be
ignored. Ignoring is done via a dedicated HDF5 attribute that can be set or removed
by ./h5doctor.py ignore.

Handling multiple .h5 files is done seamlessly, and usually you don’t have to know
which .h5 file contains the simulation you wish to ignore. Rather, ./h5doctor.py
ignore select uses Beaupy20 to help you find easily the simulation you are interested
in. The other ./h5doctor.py ignore subcommands are:

20https://petereon.github.io/beaupy/

65

https://petereon.github.io/beaupy/

• search: Search and report any ignored simulations

• clean: Clean all ignored simulations

B.9 Helpers, not Dealing Directly with Simulations

All other Python files in the repository collect functions related to a certain topic in
simulating or plotting. Most of them are also executables, allowing to test the functions
implemented in them, in various ways. Table B.9 briefly describes them.

66

N
am

e
P

ur
po

se
E

xe
cu

ti
on

an
al
yz
e.
py

A
na

ly
zi

ng
re

su
lts

,a
nd

st
ru

ct
ur

in
g

th
er

es
ul

ts
al

so
in

to
a
xa
rr
ay
.D
at
as
et

.
Sh

ow
s

th
e

Py
th

on
re

pr
es

en
ta

tio
n

of
th

e
co

m
pu

te
d

xa
rr
ay
.D
at
as
et

s,
gi

ve
n
.h
5

fil
es

.
bo
lt
zm
an
n.
py

Im
pl

em
en

t
an

d
te

st
s

va
rio

us
te

m
pe

ra
tu

re
co

m
pu

ta
-

tio
ns

,a
nd

te
m

pe
ra

tu
re

s-
de

pe
nd

en
t

di
st

rib
ut

io
ns

.
G

iv
en

tr
ap

se
cu

la
r

fre
qu

en
ci

es
an

d
ot

he
r

pa
ra

m
et

er
s,

ca
n

pr
in

t
an

d
pl

ot
st

at
ist

ic
s

of
di

st
rib

ut
io

ns
.

co
ul
om
b.
py

Im
pl

em
en

t
C

ou
lo

m
b

en
er

gi
es

ca
lc

ul
at

io
n,

us
in

g
Fr

eu
d’

sA
[R

D
H

+
20

]
lo
ca
li
ty
.A
AB
BQ
ue
ry

-
al

lo
w

in
g

to
ite

ra
te

al
ln

ea
re

st
-n

ei
gh

bo
rs

effi
ci

en
tly

.

C
an

ca
lc

ul
at

e
&

pl
ot

da
ta

lik
e

pr
es

en
te

d
in

se
c-

tio
n

2.
1.

3
an

d
in

ap
pe

nd
ix

A
.

la
se
r_
co
ol
.p
y

Im
pl

em
en

t
la

se
r

co
ol

in
g

re
la

te
d

fu
nc

tio
ns

.
O

pe
ns

a
M

at
pl

ot
lib

pl
ot

so
lv

in
g

th
e

eq
ua

tio
n

of
m

o-
tio

n
of

a
sin

gl
e

pa
rt

ic
le

un
de

r
a

ha
rm

on
ic

fo
rc

e
an

d
th

el
as

er
co

ol
in

g
fo

rc
e.

In
cl

ud
in

g
sli

de
rs

fo
rv

ar
io

us
pa

-
ra

m
et

er
st

ha
ta

ffe
ct

th
e

re
su

lts
,s

im
ila

rly
to

fig
ur

e
2.

1.
ma
th
ie
u.
py

Im
pl

em
en

ta
Tr
ap

cl
as

ss
ol

vi
ng

th
e

M
at

hi
eu

eq
ua

tio
ns

gi
ve

n,
as

de
sc

rib
ed

in
se

ct
io

n
2.

1.
2.

C
an

op
en

fig
ur

es
2.

2,
2.

1,
2.

3
&

2.
7.

Is
al

so
ca

pa
bl

e
of

ex
pl

or
in

g
th

e
de

pe
nd

en
ce

of
{(

a
i,

q i
)}

so
lu

tio
ns

gi
ve

n
β

i
in

ot
he

r
wa

ys
.

op
ti
ma
l_
co
ol
in
g.
py

N
on

e
fo

r
sim

ul
at

in
g

an
d

pl
ot

tin
g.

C
al

cu
la

te
s

a
th

eo
ry

th
at

wa
s

no
t

fu
lly

ve
rifi

ed
in

th
is

wo
rk

,
an

d
wa

sn
’t

im
po

rt
an

t
en

ou
gh

,
an

d
he

nc
e

wa
s

le
ft

ou
t.

ph
ys
ic
al
_c
on
st
an
ts
.p
y

Pu
ta

ll
ph

ys
ic

al
an

d
te

ch
ni

ca
lp

ar
am

et
er

si
n

th
e

sa
m

e
pl

ac
e.

D
oe

s
no

th
in

g.

pw
lf
Wr
ap
pe
r.
py

W
ra

ps
th

e
PW

LF
al

go
rit

hm
to

ea
se

ha
nd

lin
g

of
th

e
fit

pa
ra

m
et

er
s’

un
ce

rt
ai

nt
ie

s
[L

eb
10

].
D

oe
s

no
th

in
g.

bo
lg
.p
y

Im
pl

em
en

ts
an

al
go

rit
hm

(w
rit

te
n

by
C

la
ud

e.
ai

),
th

at
pe

rfo
rm

s
an

op
po

sit
e

of
fil

e
pa

th
gl

ob
bi

ng
(h

en
ce

th
e

na
m

e)
.

U
se

d
fo

r
pi

ck
in

g
fig

ur
es

’t
itl

es
.

Te
st

st
he

al
go

rit
hm

us
in

g
sim

pl
y

fil
ep

at
hs

ar
gu

m
en

ts
.

Ta
bl

e
B.

9:
A

ll
he

lp
er

Py
th

on
fil

es
in

th
e

re
po

sit
or

y.

67

B.10 Reference Tables & Figures

Table B.10: The list of other float typed parameters with their indices and values,
created using ./sim.py --list latex-most

fx[kHz] fy[kHz] fz[kHz] frf [kHz] Ω/Γ δ/Γ Laser’s (θ, ϕ)∗ Ti[K]

0 0.50 0.50 0.50 20.00 0.10 -15.00
0 0
67.5 0
112.5 0

5.00

1 1.00 1.00 1.00 30.00 0.25 -13.97
0 0
67.5 0
45 45

10.00

2 1.50 1.50 1.50 40.00 0.40 -12.93
0 0
67.5 0
45 -45

20.00

3 2.00 2.00 2.00 50.00 0.55 -11.90
0 0
67.5 0
-45 45

40.00

4 2.50 2.50 2.50 60.00 0.70 -10.87
0 0
112.5 0
45 45

80.00

5 3.00 3.00 3.00 70.00 0.85 -9.83
0 0
112.5 0
45 -45

6 3.50 3.50 3.50 100.00 1.00 -8.80
0 0
112.5 0
-45 45

7 4.00 4.00 4.00 200.00 2.50 -7.77
0 0
45 45
45 -45

8 4.50 4.50 4.50 400.00 4.00 -6.73
0 0
45 45
-45 45

9 5.00 5.00 5.00 800.00 5.50 -5.70
0 0
45 -45
-45 45

10 5.50 5.50 5.50 7.00 -4.67
67.5 0
112.5 0
45 45

68

Table B.10: The list of other float typed parameters with their indices and values,
created using ./sim.py --list latex-most

fx[kHz] fy[kHz] fz[kHz] frf [kHz] Ω/Γ δ/Γ Laser’s (θ, ϕ)∗ Ti[K]

11 6.00 6.00 6.00 8.50 -3.63
67.5 0
112.5 0
45 -45

12 6.50 6.50 6.50 10.00 -2.60
67.5 0
112.5 0
-45 45

13 7.00 7.00 7.00 -1.57
67.5 0
45 45
45 -45

14 7.50 7.50 7.50 -0.53
67.5 0
45 45
-45 45

15 8.00 8.00 8.00 0.50
67.5 0
45 -45
-45 45

16 8.50 8.50 8.50
112.5 0
45 45
45 -45

17 9.00 9.00 9.00
112.5 0
45 45
-45 45

18 9.50 9.50 9.50
112.5 0
45 -45
-45 45

19 10.00 10.00 10.00
45 45
45 -45
-45 45

20 10.50 10.50 10.50 90 0
21 11.00 11.00 11.00 0 0
22 11.50 11.50 11.50 67.5 0

23 12.00 12.00 12.00 112.5 0
67.5 0

24 12.50 12.50 12.50 0 0
67.5 0

25 13.00 13.00 13.00 0 0
45 -45

69

Table B.10: The list of other float typed parameters with their indices and values,
created using ./sim.py --list latex-most

fx[kHz] fy[kHz] fz[kHz] frf [kHz] Ω/Γ δ/Γ Laser’s (θ, ϕ)∗ Ti[K]

26 13.50 13.50 13.50 67.5 0
45 -45

27 14.00 14.00 14.00 45 -45
28 14.50 14.50 14.50
29 15.00 15.00 15.00
30 15.50 15.50 15.50
31 16.00 16.00 16.00
32 16.50 16.50 16.50
33 17.00 17.00 17.00
34 17.50 17.50 17.50
35 18.00 18.00 18.00
36 18.50 18.50 18.50
37 19.00 19.00 19.00
38 19.50 19.50 19.50
39 20.00 20.00 20.00

70

0.
25

0.
40

0.
55

0.
70

0.
85

1.
00

2.
50

om
eg

a
(x

)
5

5.
00

10
.0

0
20
.0

0
40
.0

0

T
in

it
(c

ol
or

)
1

89
40

7
67

0
94

9

se
ed

(a
ve

ra
ge

)
1

Y
ch

oi
ce

T
si

ze
E
c

f c
o
o
l

f c
lo
u
d

P
ar

t

st
ab

ili
zi

n
g

co
ol

in
g

s-
f

f/
s

R
eg

im
e

0 1

A
xi

s

x y z

F
re

q
.

ff
t

fi
t

n
on

e
d

iff
ra

ti
o

O
p

er
at

or

C
o

or
d

.

~v −→ ωx
R

F

〈�
〉

m
in

(�
)

m
a
x

(�
)

A
ve

(|u
|)2

(π
/
8)

V
ar

(|u
|)/

(3
−

8
/π

)
V

ar
(u
x
)

V
ar

(u
y
)

V
ar

(u
z
)

−6
m

m−
4

m
m−

2
m

m
0

m
2

m
m

4
m

m
6

m
m

x

−6
m

m
−4

m
m

−2
m

m
0

m
2

m
m

4
m

m
6

m
m y

−6
m

m

−4
m

m

−2
m

m

0
m

2
m

m

4
m

m

6
m

m

z

m
as

s=
17

4;
tr

ap
p

ed
:

70
1/

70
1

m
as

s=
22

2;
tr

ap
p

ed
:

29
9/

29
9

0
5

1
0

1
5

2
0

2
5

30
3
5

ti
m

e
[m

s]

24681012

T[Kelvin]

m
as

s=
17

4
fi

t:
T
f
in
a
l

=
2
.9

(1
8
)

K

m
as

s=
22

2
fi

t:
T
f
in
a
l

=
7
.7

(1
4
)

K

f 1
7
4

=
2
96
.7

(4
5)

H
z

f 2
2
2

=
2
9
.5

(7
)

H
z

f 1
7
4

=
3
5
.6

(7
4)

H
z

f 2
2
2

=
1
0
.3

(1
3)

H
z

m
as

s=
17

4

m
as

s=
22

2

L
as

er
C

o
ol

S
ta

rt
s

0.
5

1
.0

1
.5

2
.0

2
.5

Ω
/Γ

010203040506070

Tf[K]

T
i

=
5
.0

0
[K

]

T
i

=
1
0
.0

0
[K

]

T
i

=
20
.0

0[
K

]

T
i

=
40
.0

0[
K

]

m
as

s=
17

4

m
as

s=
22

2

C
=

0.
30

,
δ/

Γ
=

-2
.6

0,
(θ
,φ

)∗
=
r−

,
td

=
15

83
,
f r

f
=

50
.0

0[
k
H

z]
,

tc
=

30
.0

m
s,

ts
=

6.
0m

s,
Σ

=
10

00
,
f x

=
8.

50
[k

H
z]

,
f y

=
8.

50
[k

H
z]

,
f z

=
1.

50
[k

H
z]

Fi
gu

re
B.

1:
A

ty
pi

ca
lw

in
do

w
op

en
ed

by
./
pl
ot
.p
y.

A
ll

fe
at

ur
es

ar
e

de
sc

rib
ed

in
se

ct
io

n
B.

6.

71

total↓
cloud

→
0

1
2

3
4

5
6

7
8

9
10

11
0

0/1
0/1

0/1
0/1

0/1
0/1

0/1
0/1

0/1
0/1

0/1
1/1

1
0/50

2/50
3/50

4/50
5/50

6/50
8/50

11/50
14/50

19/50
25/50

50/50
2

0/72
3/72

4/72
6/72

7/72
10/72

12/72
16/72

21/72
27/72

36/72
72/72

3
0/105

5/105
6/105

8/105
11/105

14/105
18/105

24/105
31/105

40/105
52/105

105/105
4

0/153
7/153

9/153
12/153

16/153
21/153

27/153
35/153

45/153
59/153

76/153
153/153

5
0/223

11/223
14/223

18/223
24/223

31/223
40/223

51/223
66/223

86/223
111/223

223/223
6

0/325
16/325

20/325
27/325

35/325
45/325

58/325
75/325

97/325
125/325

162/325
325/325

7
0/472

23/472
30/472

39/472
50/472

65/472
84/472

109/472
141/472

182/472
236/472

472/472
8

0/687
34/687

44/687
57/687

74/687
95/687

123/687
159/687

205/687
265/687

343/687
687/687

9
0/1000

50/1000
64/1000

83/1000
107/1000

139/1000
179/1000

232/1000
299/1000

387/1000
500/1000

1000/1000

Table
B.11:

T
he

list
of

clouds’
am

ounts.
C

alculated
via

rounding
dow

n
cloud

concentrations,
and

total
am

ounts.
C

reated
using

./sim.py
--list

latex-amounts.

72

Appendix C

Calculating Intra-molecular
Vibration Redistribution (IVR)

Before we decided to use CHDBrI+ for our ∆PV measurement, we wanted to assess the
natural life time of the vibrational levels. Apparently when a molecule is in an excited
vibrational state, it’s internal energy can be redistributed into other degrees of freedom
of the molecule - hence the term Intra Vibrational Redistribution (IVR)[BR97]. This
is a contributing factor to the life times of the vibrational levels, in addition to black
body radiation.

The chance for IVR to happen depends on the structure of the molecule in ways
out of scope for the assessment presented here. We did however developed a simple,
brute-force model that would give as a hint on how likely this is to happen, while also
focusing solely on vibrational levels.

To explain our model, we can start with an example: Say you have a molecule with
the following vibrational eigen modes:

modes 1 2 3 4
energies [Arb.u] 1.5 2.5 5 6.5

Now, if the molecule’s 3rd vibrational mode is excited, meaning ν3 = 1, the same
internal energy can be redistributed into a double excitation of the 2nd mode, meaning
1ν3 = 2ν2. Likewise, 1ν4 can be redistributed into 2ν2 + 1ν1 or 1ν3 + 1ν1. In real life
the vibrational energies are not that rational, but still the line widths of the vibrational
levels might allow such transitions.

Here’s how we generalized this: Take a linear combination of modes, where all
coefficients are non-negative integers; What is the probability that this combination
of modes will approximate another such combination of energies? More importantly,
given νn, what is the probability that such a linear combination of several {νi}ki ?

To answer this we computed all of these combinations, up to a certain point, and
plotted their density as a function of energy. This is essentially a histogram, we call
IVR histogram. The histogram for our target CHDBrI+ molecule, along with dashed

73

lines marking the input vibrational modes is depicted in figure C.1.

0 500 1000 1500 2000 2500 3000 3500

Energy
[
cm−1

]
0.0

0.5

1.0

1.5

2.0

[#
·c

m
]

CHDBrI+.B97

CHDBrI+.EOMCC

Figure C.1: IVR histogram computed for CHDBrI+, given the eigen modes also
given in table 1.1a. The different colors represent two different computational meth-
ods [LEB+23]. Dashed lines represent the input vibrational modes, and their colors
match the colors of the ascending histogram lines.

We compared with the same method the IVR histograms of different molecular ions
candidates for our Parity Violation measurement, and found outstanding differences in
favor of CHDBrI+, as depicted in figure C.2. It seems that using a heavier atom in
combination with CH and BrX is increasing the density of states and thus probably
increases the chances for IVR.

0 500 1000 1500 2000 2500 3000 3500

Energy
[
cm−1

]
0

20

40

60

80

[#
·c

m
]

CHCaBr2+.B97

CHCaBrI+.B97

CHDBr2+.B97

CHDBrI+.B97

CHYbBr2+.B97

Figure C.2: A comparison of IVR histograms for all molecules mentioned in our ab-
initio calculations [LEB+23]. All eigen modes were computed with the B97 method.

74

C.1 Technical Notes

The source code for computing all possible energy combinations and plotting them, is
available at https://gitlab.com/doronbehar/IVR-calculator. It consists mainly
of 2 Python scripts, one for generating the data, and the other for plotting it. The
main Python dependencies are Numpy [HMvdW+20] & Matplotlib [Hun07] and for
generating IVR data, progressbar21 is required too.

C.1.1 ./calc.py

Must be given a simple text file with a list of numbers, each corresponding to an
eigen energy in any units you wish to use. In all calculations above and as usually in
vibrational modes energy units are cm−1, and these are the units the plotting script
./plot.py uses too. The way it iterates the combinations looks like this:

[prompt] $./calc.py <your-energies-file>.txt
Energies are [132.0, 144.7, 205.0, 442.0, 500.0, 520.0, 894.0, 1091.0, 3182.0]
Cutoff energy (cumputed) used will be 3578.0
Will save all combinations to example.omegas.combinations.npz
maximal coefficients are: = (28, 25, 18, 09, 08, 07, 05, 04, 02)
[Elapsed Time: 0:00:00] |# |combination: (00, 00, 03, 06, 00, 00, 00, 00, 00)

The last line is a progress bar where # are used to mark progress in the calcula-
tion, and takes the full terminal width. The coefficients calculated at any given time
are printed there as well. The maximal coefficients are calculated such that each the
maximal coefficient of any eigen energy alone doesn’t go beyond the cutoff energy de-
clared at the 2nd line. The cutoff energy is computed somewhat heuristically to avoid
calculating too much beyond the last energy, such that the graphs stop just a bit after
the highest eigen energy.

This computation takes a long time, and unfortunately is not parallelized as of yet.
When this finishes, it creates a .npz file as declared in the 3rd line printed above, and
this file can be given as an argument to ./plot.py.

C.1.2 ./plot.py

Plotting is fairly easy - you just give it as arguments .npz suffixed files that contain
calculations generated by ./calc.py. The command contains several aesthetic com-
mand line options that are self explanatory when you run ./plot.py --help. However
--bins is of worth mentioning: Since we are calculating density of states combinations
as a function of energy, we need to actually calculate a histogram. --bins simply spec-
ifies the number of bins used for the histograms. It defaults to the √ of the number of
total combinations, which comes out best.

1https://pypi.org/project/progressbar2/

75

https://gitlab.com/doronbehar/IVR-calculator
https://pypi.org/project/progressbar2/

C.1.3 ./density-printer.py

If you wish to calculate the densities of states exactly near the eigen energies, you can
use this script. It will print these in the format of a table in different formats: (1)
ASCII to stderr and (2) LaTeX to stdout. This can be useful if you wish to put this
information in an article. The density of states of the molecules in figure C.2 at their
eigen energies is printed in table C.1.

CHCaBr2+ CHCaBrI+ CHDBr2+ CHDBrI+ CHYbBr2+
0 0.101 0.056 0.000 0.000 0.070
1 0.000 0.056 0.019 0.012 0.070
2 0.000 0.000 0.009 0.024 0.000
3 0.000 0.000 0.038 0.036 0.140
4 0.152 0.056 0.019 0.036 0.070
5 0.000 0.112 0.038 0.084 0.070
6 0.253 0.337 0.085 0.108 0.912
7 0.709 0.674 0.275 0.553 0.772
8 28.157 36.291 0.883 1.514 61.385

Table C.1: Density of states of our ∆PV candidates, at each vibrational energy.

76

Bibliography

[Ake12] Nitzan Akerman. Trapped Ions and Free Photons. PhD thesis, Wizmann
Institute of Science, Rehovot, Israel, 2012. 143 pages. url: https:
//weizmann.primo.exlibrisgroup.com/permalink/972WIS_INST/
10fp4af/alma990002769100203596.

[BR97] Dean Boyall and Katharine L. Reid. Modern studies of intramolecular
vibrational energy redistribution. Chem. Soc. Rev., 26:223–232, 3, 1997.
url: http://dx.doi.org/10.1039/CS9972600223.

[BW02a] T. Baba and I. Waki. Sympathetic cooling rate of gas-phase ions in
a radio-frequency-quadrupole ion trap. Applied Physics B, 74(4):375–
382, April 1, 2002. url: https://doi.org/10.1007/s003400200829
(visited on 05/12/2025).

[BW02b] T. Baba and I. Waki. Sympathetic cooling rate of gas-phase ions in
a radio-frequency-quadrupole ion trap. Applied Physics B: Lasers and
Optics, 74(4–5):375–382, April 2002. url: http://dx.doi.org/10.
1007/s003400200829.

[Coh92] C. Cohen-Tannoudji. Atomic motion in laser light. In J. Dalibard, J. M.
Raimond, and J. Zinn-Justin, editors, Fundamental Systems in Quan-
tum Optics (Systèmes Fondamentaux en Optique Quantique), chapter I-
3, page 29. Elsevier Science Publishers B.V., Amsterdam, 1992. url:
https://www.phys.ens.psl.eu/~cct/articles/cours/atomic-
motion-in-laser-light-1992.pdf. Les Houches, Session LIII, 1990.

[Dah00] David A. Dahl. Simion ion optics simulation program, Idaho National
Engineering Laboratory, 2000. url: http://simion.com. Version 8.0.

[Dan20] Derek J. Daniel. Exact solutions of mathieu’s equation. Progress of The-
oretical and Experimental Physics, 2020(4):043A01, April 2020. eprint:
https://academic.oup.com/ptep/article-pdf/2020/4/043A01/
33114067/ptaa024.pdf.

[Del24] Pol Dellaiera. Reproducibility in Software Engineering. PhD thesis, Uni-
versity of Mons, August 2024. url: https://doi.org/10.5281/
zenodo.13208605.

77

https://weizmann.primo.exlibrisgroup.com/permalink/972WIS_INST/10fp4af/alma990002769100203596
https://weizmann.primo.exlibrisgroup.com/permalink/972WIS_INST/10fp4af/alma990002769100203596
https://weizmann.primo.exlibrisgroup.com/permalink/972WIS_INST/10fp4af/alma990002769100203596
http://dx.doi.org/10.1039/CS9972600223
https://doi.org/10.1007/s003400200829
http://dx.doi.org/10.1007/s003400200829
http://dx.doi.org/10.1007/s003400200829
https://www.phys.ens.psl.eu/~cct/articles/cours/atomic-motion-in-laser-light-1992.pdf
https://www.phys.ens.psl.eu/~cct/articles/cours/atomic-motion-in-laser-light-1992.pdf
http://simion.com
https://academic.oup.com/ptep/article-pdf/2020/4/043A01/33114067/ptaa024.pdf
https://academic.oup.com/ptep/article-pdf/2020/4/043A01/33114067/ptaa024.pdf
https://doi.org/10.5281/zenodo.13208605
https://doi.org/10.5281/zenodo.13208605

[Dol06] Eelco Dolstra. The Purely Functional Software Deployment Model. PhD
thesis, Utrecht University, 2006. url: https://dspace.library.uu.
nl/handle/1874/7540. Available from Utrecht University Repository.

[DT] Eelco Dolstra and The Nix contributors. Nix. url: https://github.
com/NixOS/nix.

[Ere23] Itay Erez. Towards a Measurement of Parity Violation in Chiral Molec-
ular Ions: The Advantage of Using a Mixed Handedness Sample. MSc,
Technion Institute of Technology, Haifa, Israel, 2023.

[ESL+23] Eduardus, Yuval Shagam, Arie Landau, Shirin Faraji, Peter Schw-
erdtfeger, Anastasia Borschevsky, and Lukáš F. Pašteka. Large vi-
brationally induced parity violation effects in chdbri+. Chem. Com-
mun., 59:14579–14582, 98, 2023. url: http://dx.doi.org/10.1039/
D3CC03787H.

[FN22] Francis Filbet and Claudia Negulescu. FOKKER-PLANCK MULTI-
SPECIES EQUATIONS IN THE ADIABATIC ASYMPTOTICS. July
2022. url: https://hal.science/hal-03573120 (visited on 03/06/2025).

[Foo05] Christopher J. Foot. Atomic physics. In See subsection 7.6.2 for deriva-
tion of Rabi frequency vs intensity. Oxford University Press, Oxford,
UK, 2005. Chapter 7, pages 142–143.

[Gho95] Pradip K Ghosh. Ion Traps. Oxford University Press, November 1995.
url: https://doi.org/10.1093/oso/9780198539957.001.0001.

[HA91] R. W. Hasse and V. V. Avilov. Structure and Madelung energy of spher-
ical Coulomb crystals. Physical Review A, 44(7):4506–4515, October 1,
1991. url: https://link.aps.org/doi/10.1103/PhysRevA.44.4506
(visited on 03/11/2025).

[HFC+22] C. A. Holliman, M. Fan, A. Contractor, S. M. Brewer, and A. M. Jayich.
Radium ion optical clock. Phys. Rev. Lett., 128:033202, 3, January
2022. url: https://link.aps.org/doi/10.1103/PhysRevLett.128.
033202.

[HH17] S. Hoyer and J. Hamman. Xarray: N-D labeled arrays and datasets in
Python. Journal of Open Research Software, 5(1), 2017. url: https:
//doi.org/10.5334/jors.148.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

78

https://dspace.library.uu.nl/handle/1874/7540
https://dspace.library.uu.nl/handle/1874/7540
https://github.com/NixOS/nix
https://github.com/NixOS/nix
http://dx.doi.org/10.1039/D3CC03787H
http://dx.doi.org/10.1039/D3CC03787H
https://hal.science/hal-03573120
https://doi.org/10.1093/oso/9780198539957.001.0001
https://link.aps.org/doi/10.1103/PhysRevA.44.4506
https://link.aps.org/doi/10.1103/PhysRevLett.128.033202
https://link.aps.org/doi/10.1103/PhysRevLett.128.033202
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.
url: https://doi.org/10.1038/s41586-020-2649-2.

[Hom13] Jonathon P. Home. Chapter 4 - quantum science and metrology with
mixed-species ion chains. In Ennio Arimondo, Paul R. Berman, and
Chun C. Lin, editors, Advances in Atomic, Molecular, and Optical
Physics. Volume 62, Advances In Atomic, Molecular, and Optical Physics,
pages 231–277. Academic Press, 2013. url: https://www.sciencedir
ect.com/science/article/pii/B9780124080904000049.

[HRK+15] M. Hettrich, T. Ruster, H. Kaufmann, C. F. Roos, C. T. Schmiegelow,
F. Schmidt-Kaler, and U. G. Poschinger. Measurement of dipole matrix
elements with a single trapped ion. Phys. Rev. Lett., 115:143003, 14,
August 2015. url: https://link.aps.org/doi/10.1103/PhysRevLe
tt.115.143003.

[Hud16] Eric R. Hudson. Sympathetic cooling of molecular ions with ultra-
cold atoms. EPJ Techniques and Instrumentation, 3(1):1–21, December
2016. (Visited on 07/23/2025).

[Hun07] J. D. Hunter. Matplotlib: a 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[IUH+93] H. Imajo, S. Urabe, K. Hayasaka, M. Watanabe, and R. Hayashi. Laser
cooling of a small number of be+ ions in a penning trap. Applied Physics
B Photophysics and Laser Chemistry, 57(2):141–144, August 1993. url:
http://dx.doi.org/10.1007/BF00425998.

[JPYM92] Jodie V. Johnson, Randall E. Peddeer, Richard A. Yost, and R. E.
March. The stretched quadrupole ion trap: Implications for the Math-
ieu au and qu parameters and experimental mapping of the stability
diagram. Rapid Communications in Mass Spectrometry, 6(12):760–764,
1992. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
rcm.1290061210 (visited on 07/30/2025).

[JV19] Charles F. Jekel and Gerhard Venter. pwlf: A Python Library for Fitting
1D Continuous Piecewise Linear Functions. 2019. url: https://gith
ub.com/cjekel/piecewise_linear_fit_py.

[KKM+00] D. Kielpinski, B. E. King, C. J. Myatt, C. A. Sackett, Q. A. Turchette,
W. M. Itano, C. Monroe, D. J. Wineland, and W. H. Zurek. Sym-
pathetic cooling of trapped ions for quantum logic. Phys. Rev. A,
61:032310, 3, February 2000. url: https://link.aps.org/doi/
10.1103/PhysRevA.61.032310.

79

https://doi.org/10.1038/s41586-020-2649-2
https://www.sciencedirect.com/science/article/pii/B9780124080904000049
https://www.sciencedirect.com/science/article/pii/B9780124080904000049
https://link.aps.org/doi/10.1103/PhysRevLett.115.143003
https://link.aps.org/doi/10.1103/PhysRevLett.115.143003
http://dx.doi.org/10.1007/BF00425998
https://onlinelibrary.wiley.com/doi/abs/10.1002/rcm.1290061210
https://onlinelibrary.wiley.com/doi/abs/10.1002/rcm.1290061210
https://github.com/cjekel/piecewise_linear_fit_py
https://github.com/cjekel/piecewise_linear_fit_py
https://link.aps.org/doi/10.1103/PhysRevA.61.032310
https://link.aps.org/doi/10.1103/PhysRevA.61.032310

[LEB+23] Arie Landau, Eduardus, Doron Behar, Eliana Ruth Wallach, Lukáš
F. Pašteka, Shirin Faraji, Anastasia Borschevsky, and Yuval Shagam.
Chiral molecule candidates for trapped ion spectroscopy by ab initio
calculations: from state preparation to parity violation. The Journal
of Chemical Physics, 159(11):114307, September 2023. eprint: https:
//pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0163641/
18138404/114307_1_5.0163641.pdf.

[Leb10] Eric O. Lebigot. Uncertainties: a Python package for calculations with
uncertainties. Source code available at https://github.com/lmfit/
uncertainties. 2010. url: https://uncertainties.readthedocs.
io/en/latest/.

[Mat36] Émile Mathieu. Mémoire sur le mouvement vibratoire d’une membrane
de forme elliptique. Journal De Mathématiques:68, 1836.

[MD21] Yansong Meng and Lijun Du. Study on the high-efficiency sympathetic
cooling of mixed ion system with a large mass-to-charge ratio difference
in a dual radio-frequency field by numerical simulations. The European
Physical Journal D, 75(1):19, January 21, 2021. url: https://doi.
org/10.1140/epjd/s10053-020-00015-1 (visited on 03/06/2025).

[OMS96] Yoshitaka Oshima, Yoshiki Moriwaki, and Tadao Shimizu. Sympathetic
cooling of ions in an rf trap. Progress in Crystal Growth and Char-
acterization of Materials, 33(1):405–408, 1996. url: https://www.
sciencedirect.com/science/article/pii/0960897496836801.

[PSHL25] Yuehua Pang, Yi Shen, Jiahao Huang, and Chaohong Lee. High-precision
many-body ramsey spectroscopy with composite pulses. Phys. Rev. A,
111:042611, 4, April 2025. url: https://link.aps.org/doi/10.
1103/PhysRevA.111.042611.

[QS01] Martin Quack and Jürgen Stohner. Molecular chirality and the funda-
mental symmetries of physics: influence of parity violation on rovibra-
tional frequencies and thermodynamic properties. Chirality, 13(10):745–
753, 2001. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/chir.10025.

[Qua02] Martin Quack. How important is parity violation for molecular and
biomolecular chirality? Angewandte Chemie International Edition, 41(24):4618–
4630, 2002. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/anie.200290005.

[Ran20] Anthony Michael Ransford. Old Dog, New Trick: High Fidelity, Background-
free State Detection of an Ytterbium Ion Qubit. PhD thesis, Univer-
sity of California, 2020. 136 pages. url: https://campbellgroup.
physics.ucla.edu/papers/AnthonyRansfordThesis.pdf.

80

https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0163641/18138404/114307_1_5.0163641.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0163641/18138404/114307_1_5.0163641.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0163641/18138404/114307_1_5.0163641.pdf
https://github.com/lmfit/uncertainties
https://github.com/lmfit/uncertainties
https://uncertainties.readthedocs.io/en/latest/
https://uncertainties.readthedocs.io/en/latest/
https://doi.org/10.1140/epjd/s10053-020-00015-1
https://doi.org/10.1140/epjd/s10053-020-00015-1
https://www.sciencedirect.com/science/article/pii/0960897496836801
https://www.sciencedirect.com/science/article/pii/0960897496836801
https://link.aps.org/doi/10.1103/PhysRevA.111.042611
https://link.aps.org/doi/10.1103/PhysRevA.111.042611
https://onlinelibrary.wiley.com/doi/pdf/10.1002/chir.10025
https://onlinelibrary.wiley.com/doi/pdf/10.1002/chir.10025
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200290005
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200290005
https://campbellgroup.physics.ucla.edu/papers/AnthonyRansfordThesis.pdf
https://campbellgroup.physics.ucla.edu/papers/AnthonyRansfordThesis.pdf

[RDH+20] Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P.
Spellings, Joshua A. Anderson, and Sharon C. Glotzer. Freud: a soft-
ware suite for high throughput analysis of particle simulation data.
Computer Physics Communications, 254:107275, 2020. url: http://ww
w.sciencedirect.com/science/article/pii/S0010465520300916.

[SBD10] E. S. Shuman, J. F. Barry, and D. DeMille. Laser cooling of a diatomic
molecule. Nature, 467(7317):820–823, October 2010. url: https://
www.nature.com/articles/nature09443 (visited on 07/28/2025).

[SKH+16] Nicolas Sillitoe, Jean-Philippe Karr, Johannes Heinrich, Thomas Lou-
vradoux, Albane Douillet, and Laurent Hilico. $\Bar\textrmH^+$ Sym-
pathetic Cooling Simulations with a Variable Time Step. In JPS Con-
ference Proceedings, volume 18, page 011014, Kanazawa, Japan, March
2016. url: https://hal.science/hal-01669539 (visited on 03/17/2025).

[SL03] U. Shumlak and J. Loverich. Approximate Riemann solver for the two-
fluid plasma model. Journal of Computational Physics, 187(2):620–638,
May 2003. url: https://linkinghub.elsevier.com/retrieve/pii/
S0021999103001517 (visited on 03/06/2025).

[SRKK12] Kenichiro Saito, Peter T.A. Reilly, Eiko Koizumi, and Hideya Koizumi.
A hybrid approach to calculating coulombic interactions: an effective
and efficient method for optimization of simulations of many ions in
quadrupole ion storage device with simion. International Journal of
Mass Spectrometry, 315:74–80, 2012. url: https://www.sciencedire
ct.com/science/article/pii/S1387380612001236.

[Ste24a] Daniel A. Steck. Quantum and atom optics. In Revision 0.16.2, 15
November 2024. 2024. Chapter 5, pages 248–249. url: http://steck.
us/teaching.

[Ste24b] Daniel A. Steck. Quantum and atom optics. In Revision 0.16.2, 15
November 2024. 2024. Chapter 1, pages 48–49. url: http://steck.
us/teaching.

[TAB+22] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton. LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales. Comp.
Phys. Comm., 271:108171, 2022.

[Tan11] O. Tange. Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36(1):42–47, February 2011. url: http://www.
gnu.org/s/parallel.

81

http://www.sciencedirect.com/science/article/pii/S0010465520300916
http://www.sciencedirect.com/science/article/pii/S0010465520300916
https://www.nature.com/articles/nature09443
https://www.nature.com/articles/nature09443
https://hal.science/hal-01669539
https://linkinghub.elsevier.com/retrieve/pii/S0021999103001517
https://linkinghub.elsevier.com/retrieve/pii/S0021999103001517
https://www.sciencedirect.com/science/article/pii/S1387380612001236
https://www.sciencedirect.com/science/article/pii/S1387380612001236
http://steck.us/teaching
http://steck.us/teaching
http://steck.us/teaching
http://steck.us/teaching
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel

[The] The HDF Group. Hierarchical Data Format, version 5. url: https:
//github.com/HDFGroup/hdf5.

[TP00] R. C. Thompson and J. Papadimitriou. Simple model for the laser
cooling of an ion in a Penning trap. Journal of Physics B: Atomic,
Molecular and Optical Physics, 33(17):3393, September 2000. url: h
ttps://dx.doi.org/10.1088/0953-4075/33/17/317 (visited on
08/03/2025).

[VC21] Ghislaine Vantomme and Jeanne Crassous. Pasteur and chirality: a
story of how serendipity favors the prepared minds. Chirality, 33(10):597–
601, 2021. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/chir.23349.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles
R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

[VHA+22] Nathaniel B. Vilas, Christian Hallas, Loïc Anderegg, Paige Robichaud,
Andrew Winnicki, Debayan Mitra, and John M. Doyle. Magneto-optical
trapping and sub-Doppler cooling of a polyatomic molecule. Nature,
606(7912):70–74, June 2022. url: https://www.nature.com/article
s/s41586-022-04620-5 (visited on 07/28/2025).

[vMHG+22] Martin W. van Mourik, Pavel Hrmo, Lukas Gerster, Benjamin Wilhelm,
Rainer Blatt, Philipp Schindler, and Thomas Monz. Rf-induced heating
dynamics of noncrystallized trapped ions. Phys. Rev. A, 105:033101, 3,
March 2022. url: https://link.aps.org/doi/10.1103/PhysRevA.
105.033101.

[Wal10] Kim Walisch. primesieve: Fast prime number generator. 2010. url:
https://github.com/kimwalisch/primesieve.

[WAMS12a] Jannes B. Wübbena, Sana Amairi, Olaf Mandel, and Piet O. Schmidt.
Sympathetic cooling of mixed-species two-ion crystals for precision
spectroscopy. Phys. Rev. A, 85:043412, 4, April 2012. url: https:
//link.aps.org/doi/10.1103/PhysRevA.85.043412.

82

https://github.com/HDFGroup/hdf5
https://github.com/HDFGroup/hdf5
https://dx.doi.org/10.1088/0953-4075/33/17/317
https://dx.doi.org/10.1088/0953-4075/33/17/317
https://onlinelibrary.wiley.com/doi/pdf/10.1002/chir.23349
https://onlinelibrary.wiley.com/doi/pdf/10.1002/chir.23349
https://www.nature.com/articles/s41586-022-04620-5
https://www.nature.com/articles/s41586-022-04620-5
https://link.aps.org/doi/10.1103/PhysRevA.105.033101
https://link.aps.org/doi/10.1103/PhysRevA.105.033101
https://github.com/kimwalisch/primesieve
https://link.aps.org/doi/10.1103/PhysRevA.85.043412
https://link.aps.org/doi/10.1103/PhysRevA.85.043412

[WAMS12b] Jannes B. Wübbena, Sana Amairi, Olaf Mandel, and Piet O. Schmidt.
Sympathetic cooling of mixed-species two-ion crystals for precision
spectroscopy. Phys. Rev. A, 85:043412, 4, April 2012. url: https:
//link.aps.org/doi/10.1103/PhysRevA.85.043412.

[WBGS08] Stefan Willitsch, Martin T. Bell, Alexander D. Gingell, and Timothy
P. Softley. Chemical applications of laser- and sympathetically-cooled
ions in ion traps. Physical Chemistry Chemical Physics, 10(48):7200,
2008. url: http://dx.doi.org/10.1039/b813408c.

[WSoT24] Eliana Ruth Wallach, Yuval Shagam, and Technion - Israel Institute
of Technology. Faculty of Physics degree granting institution. Novel
ion trap with resolved quantum state detection by velocity separation
- toward first probe of parity violation in chiral molecules / eliana ruth
wallach ; [supervision: yuval shagam]. eng, Haifa, 2024.

[WvdBG+08] A. L. Wolf, S. A. van den Berg, C. Gohle, E. J. Salumbides, W. Ubachs,
and K. S. E. Eikema. Frequency metrology on the 4s 2S12 − −4p 2P12

transition in 40Ca+ for a comparison with quasar data. Phys. Rev. A,
78:032511, 3, September 2008. url: https://link.aps.org/doi/10.
1103/PhysRevA.78.032511.

[ZOR+07a] C. B. Zhang, D. Offenberg, B. Roth, M. A. Wilson, and S. Schiller.
Molecular-dynamics simulations of cold single-species and multispecies
ion ensembles in a linear Paul trap. Physical Review A, 76(1):012719,
July 30, 2007. url: https://link.aps.org/doi/10.1103/PhysRevA.
76.012719 (visited on 03/17/2025).

[ZOR+07b] C. B. Zhang, D. Offenberg, B. Roth, M. A. Wilson, and S. Schiller.
Molecular-dynamics simulations of cold single-species and multispecies
ion ensembles in a linear Paul trap. Physical Review A, 76(1):012719,
July 30, 2007. url: https://link.aps.org/doi/10.1103/PhysRevA.
76.012719 (visited on 03/17/2025).

83

https://link.aps.org/doi/10.1103/PhysRevA.85.043412
https://link.aps.org/doi/10.1103/PhysRevA.85.043412
http://dx.doi.org/10.1039/b813408c
https://link.aps.org/doi/10.1103/PhysRevA.78.032511
https://link.aps.org/doi/10.1103/PhysRevA.78.032511
https://link.aps.org/doi/10.1103/PhysRevA.76.012719
https://link.aps.org/doi/10.1103/PhysRevA.76.012719
https://link.aps.org/doi/10.1103/PhysRevA.76.012719
https://link.aps.org/doi/10.1103/PhysRevA.76.012719

קינטית. אנרגיה

גילוי של העמוקה המשמעות ועל זוויתי, תנע שימור של המגבלה על להתגבר אפשר איך נציע לבסוף,

המתקרר היונים ענן של ההתחלתית בטמפרטורה תלוי הקירור שקצב למעשה היא המשמעות זה.

סיבובית קינטית לאנרגיה הסימפתטי הקירור בזמן מתחלקת ההתחלתית האנרגיה שכן סימפתטית,

שמצאנו מודל בקצרה גם נציג נאבדת. וכן ,Yb+-ה ליוני שמועברת קינטית ולאנרגיה שנשמרת,

התוצאות ולכן ההתחלתית, בטמפרטורה תלוי אינו הקירור שקצב חוזה שדווקא ,[BW02a]בספרות

אותו. סותרות למעשה שלנו

הגרפים את שמפיקות התוכנות ואיך הטכני, במובן עובדות הסימולציות איך במפורט נסביר ,B בפרק

הסימולציות, לשם שנכתבו נוספים לסקריפטים רלוונטיים טכניים פרטים עוד זה בפרק נתאר פועלות.

.2 בפרק בעיקר שמופיעים נוספים גרפים הפקת ולשם

על נסביר זה בפרק המחקר. של העיקרי התוכן שהוא בסימולציות תלוי שאינו חישוב נציג ,C בפרק

רלוונטית הייתה היא ומדוע ,Intra-molecular Vibration Redistribution (IVR) שנקראת תופעה

באופן הוזכרו זה חישוב של התוצאות קיראליות. במולקות הויבראציונים המצבים של שלנו למדידה

ונראה בוצע החישוב איך בפירוט יותר נסביר וכאן ,[23+LEB]שלנו הקבוצה של במאמר מתומצת

לבצע בשביל זה חישוב לצורך שנבניתה בתוכנה להשתמש איך נסביר גם כן כמו שלו. תוצאות יותר

דומים. חישובים

ii

תקציר

כיראליות, מולקולות בין מזעריים לשינויים אחראי הסטנדרטי במודל החלש הכח לפיה תחזית ישנה

הפער את למדוד היא שלנו הקבוצה של המטרה .[Qua02]הויבראציוניות התנודות בספקטרום

האנרגטי הפער של חישובים מעולם. נמדד ולא ,Parity Violation (PV) גם שנקרא הזה, האנרגטי

שהמעברים בעוד הטוב, במקרה בודדים Hz לכמה מגיע שהוא הראו מולקולות זוגות בכמה הזה

למטרה לעצמנו שמנו אנחנו והרחוק. האמצעי אדום האינפרא בתחום הם עצמם הויבראציונים

זמן, להרבה בקלות אותם ללכוד אפשר כי מולקולרים, ביונים ובחרנו הזה, האנרגטי הפער את למדוד

אותם. ולקרר

סימפתטי באופן אותן לקרר החלטנו לכן מאוד, קשה כלל בדרך זה ישיר באופן מולקולות לקרר

באופן יחד מקררים אנחנו אותו ,Yb+ עם יחד כיראלית מולקולה של לכידה באמצעות כלומר -

מפרק המולקולות בין (PV) האנרגטי הפער את מודדים אנחנו בו האופן לייזר. באמצעות ישיר

מולקולות ולסנתז חזרתי, באופן המדידה את לבצע צריכים אנחנו ולכן ,(Photo-dissociation) אותן
לזמן בהשוואה מהר שיותר כמה המולקולות את לקרר היא הזה המחקר מטרת פעם. כל חדשות

הניסוי של הייחודיים המאפיינים הניסוי. על חזרה בכל המת הזמן את להוריד כדי קוהרנטיות,

סורקים אנחנו בהן סימולציות לבצע אותנו שעודדו אלו הם מהר, לקרר שלנו הצורך ובמיוחד שלנו,

.2 בפרק המפורטות מגוונות בדרכים התוצאות את ומציגים פרמטרים,

חידושים שני ומראה והקירור, הלכידה שמאחורי התיאוריה את מפורט באופן מסביר אני ,2 בפרק

מציג אני מכן לאחר שלנו. כמו יונים למלכודות במיוחד חשובים שהיו וקירור לכידה של בתחום קטנים

הטמפרטורות את חישבתי ואיך הזמן, את חילקתי איך כמו הסימולציות, לגבי טכניים פרטים עוד

זמן. נקודת בכל

ראשית, השונים. בפרמטרים כתלות הסימולציות והן זה, מחקר של התוצאות עיקר את אראה ,3 בפרק

משפיעות למלכודת, נכנסים הלייזרים מהן הזוויות שבחירת נראה מולקולרים, יונים להוסיף מבלי עוד

הקירור לייזר עוצמת בו שלנו במחקר מאוד חשוב שהיה משהו - Yb+ ה- ענן של הקירור על מאוד

הקירור אכן שלנו, העוצמות בטווח איך ונראה מולקולריים, יונים נוסיף כך אחר גבוהה. לא שלנו

גבוהה. יותר הלייזר שעוצמת ככל יעיל יותר שלהם

שמופיעות סימפתטי לקירור המגבלות והוא זה, מחקר של המשמעותי החידוש את נראה הפרק, בהמשך

אופייניים מתדרים נמוכים שלהם שהתדרים שלנו, כמו במלכודות במיוחד ואולי צילינדריות, במלכודות

שמתאפשרת במלכודת, המולקולריים היונים של מעגלית מתנועה נובעת המגבלה יונים. למלכודות

שמאפשר זוויתי, תנע שימור למעשה הינה הזו המעגלית התנועה צילינדרית. סימטריה עם במלכודת

לאבד לא וכך בהם להתנגש מבלי Yb+-ה יוני של הקריסטל סביב להסתובב המולקלורים ליונים

i

לפיזיקה. בפקולטה שורק יותם ופרופסור שגם יובל פרופסור של בהנחייתם בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: אלו פרסומים של ביותר העדכניות הגרסאות המחבר. של מחקרו תקופת במהלך

Doron Behar. Sympathetic cooling optimization for chiral molecular ions precision spec-
troscopy. Poster Presented in CCMI 2024 conference, September 2024.

בפרט באקדמיה. המקובלות האתיות המידה אמות ולפי ביושר, כולו נערך זה חיבור שבבסיס המחקר

קודמים למחקרים והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף בפעילויות הדברים אמורים

וישר, מלא הוא זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו המחקר. מן חלק שהיוו ככל וכו',

מידה. אמות אותן לפי

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

עבור סימפתטי קירור של אופטימיזציה
מולקולות של מדויקת ספקטרוסקופיה

כיראליות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

בפיזיקה למדעים מגיסטר

בכר דורון

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2025 יולי חיפה התשפ"ה אב

עבור סימפתטי קירור של אופטימיזציה
מולקולות של מדויקת ספקטרוסקופיה

כיראליות

בכר דורון

	List of Figures
	Abstract
	1 Introduction
	1.1 Motivation
	1.1.1 Why Chiral Molecular Ions?
	1.1.2 How to Cool a Molecular Ion?
	1.1.3 Why Cool the Molecular Ions Fast?
	1.1.4 Ion Trapping
	1.1.5 The Experiment's Velocity Map Imaging

	1.2 Simulations Overview

	2 Theory
	2.1 Trapping
	2.1.1 Solving the Mathieu Equation in 1D
	2.1.2 Solving Mathieu Equation Inversely
	2.1.3 Initial Conditions & Ion-Ion Coulomb Energy
	2.1.4 A Non-Trivial Secular Frequency Mass Dependence

	2.2 Laser Cooling
	2.2.1 Ion Cloud Offset Induced by Laser Cooling Force
	2.2.2 Overcoming the Offset
	2.2.3 Summary of Laser Cooling Parameters

	2.3 State of the art Sympathetic Cooling Models
	2.4 Simulations Parameters & Convergence
	2.4.1 Time Periods
	2.4.2 Time Dividing Fineness
	2.4.3 Initial Conditions

	2.5 Simulation Results Analysis
	2.5.1 Temperature's Random Variables
	2.5.2 Temperature's Probabilistic Methods
	2.5.3 Temperature Under the Secular Approximation
	2.5.4 Temperatures Options Summary
	2.5.5 Further Summarizing Analysis

	3 Cooling Simulation Results
	3.1 Laser Cooling Intrusion Angle(s) & Trap Geometry
	3.1.1 Laser Angles Parametrization
	3.1.2 Simulation Results

	3.2 Scanning Omega & Initial Temperatures with CHDBrI+
	3.2.1 Yb+ Temperatures in the Presence of CHDBrI+
	3.2.2 Sympathetic Cooling with Varying Intensities

	3.3 Angular Momentum Conservation
	3.4 Varying Secular Frequencies

	4 Conclusion & Outlook
	A More Coulomb Energies Dependence Figures
	B Simulation Software Manual & Technical Details
	B.1 flake.nix: Setting up a Development Environment
	B.2 sim.py
	B.2.1 Parameters
	B.2.2 Managing Simulation Parameters with xarray
	B.2.3 measurements/ HDF5 groups format
	B.2.4 Scan Parallelizing Algorithm (parallel_hdf5_splitting.py)

	B.3 sim-continue.py
	B.3.1 Simulating More Time then Originally Prescribed
	B.3.2 Simulating with a Finer Time Division
	B.3.3 Removing Abruptly Some Ions
	B.3.4 File Names Details

	B.4 sim-reconcile.py
	B.4.1 Merging Threshold

	B.5 time-plot.py
	B.5.1 Handling Multi-Dimensional Scans
	B.5.2 Handling Different Traps & Offsets (collapse_ds.py)
	B.5.3 Showing pwlf Fit Results
	B.5.4 Miscellaneous Options

	B.6 plot.py
	B.6.1 Top Right: Summarized Results' Dependence on Simulation Parameters
	B.6.2 Bottom Left: Scan's Dimensions Sliders
	B.6.3 Top Left: 3D Animation
	B.6.4 Middle Right: Time Dependent Results

	B.7 histogram-plot.py
	B.8 h5doctor.py
	B.8.1 Modifying Parameters
	B.8.2 Coulomb Energies
	B.8.3 Ignoring Measurements

	B.9 Helpers, not Dealing Directly with Simulations
	B.10 Reference Tables & Figures

	C Calculating Intra-molecular Vibration Redistribution (IVR)
	C.1 Technical Notes
	C.1.1 ./calc.py
	C.1.2 ./plot.py
	C.1.3 ./density-printer.py

	Bibliography
	Hebrew Abstract

